数学说课稿:导数概念[五篇材料]

时间:2022-07-29 02:15:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学说课稿:导数概念》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学说课稿:导数概念》。

第一篇:数学说课稿:导数概念

数学说课稿:导数概念

作为一位兢兢业业的人民教师,就不得不需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。说课稿要怎么写呢?以下是小编收集整理的数学说课稿:导数概念,欢迎阅读与收藏。

数学说课稿:导数概念1

导数是近代数学中微积分的核心概念之一,是一种思想方法,这种思想方法是人类智慧的骄傲。《导数的概念》这一节内容,大致分成四个课时,我主要针对第三课时的教学,谈谈我的理解与设计,敬请各位专家斧正。

一、教材分析

1.1编者意图《导数的概念》分成四个部分展开,即:“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”,编者意图在哪里呢?用前两部分作为背景,是为了引出导数的概念;介绍导数的几何意义,是为了加深对导数的理解。从而充分借助直观来引出导数的概念;用极限思想抽象出导数;用函数思想拓展、完善导数以及在应用中巩固、反思导数,教材的显著特点是从具体经验出发,向抽象和普遍发展,使探究知识的过程简单、经济、有效。

1.2导数概念在教材的地位和作用“导数的概念”是全章核心。不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性,获得更为理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量,极限等思想,运用更高的观点和更为一般的方法解决或简化中学数学中的不少问题;导数的方法是今后全面研究微积分的重要方法和基本工具,在在其它学科中同样具有十分重要的作用;在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用。导数的出现推动了人类事业向前发展。

1.3教材的内容剖析知识主体结构的比较和知识的迁移类比如下表:

表1、知识主体结构比较

通过比较发现:求切线的斜率和物体的瞬时速度,这两个具体问题的解决都依赖于求函数的极限,一个是“微小直角三角形中两直角边之比”的极限,一个是“位置改变量与时间改变量之比”的极限,如果舍去问题的具体含义,都可以归结为一种相同形式的极限,即“平均变化率”的极限。因此以两个背景作为新知的生长点,不仅使新知引入变得自然,而且为新知建构提供了有效的类比方法。

1.4重、难点剖析

重点:导数的概念的形成过程。

难点:对导数概念的理解。

为什么这样确定呢?导数概念的形成分为三个的层次:f(x)在点x0可导→f(x)在开区间(,b)内可导→f(x)在开区间(,b)内的导函数→导数,这三个层次是一个递进的过程,而不是专指哪一个层次,也不是几个层次的简单相加,因此导数概念的形成过程是重点;教材中出现了两个“导数”,“两个可导”,初学者往往会有这样的困惑,“导数到底是个什么东西?一个函数是不是有两种导数呢?”,“导函数与导数是怎么统一的?”。事实上:

(1)f(x)在点x0处的导数是这一点x0到x0+△x的变化率的极限,是一个常数,区别于导函数。

(2)f(x)的导数是对开区间内任意点x而言,是x到x+△x的变化率的极限,是f(x)在任意点的变化率,其中渗透了函数思想。

(3)导函数就是导数!是特殊的函数:先定义f(x)在x0处可导、再定义f(x)在开区间(,b)内可导、最后定义f(x)在开区间的导函数。

(4)y=f(x)在x0处的导数就是导函数在x=x0处的函数值,表示为这也是求f′(x0)的一种方法。初学者最难理解导数的概念,是因为初学者最容易忽视或混淆概念形成过程中几个关键词的区别和联系,会出现较大的分歧和差别,要突破难点,关键是找到“f(x)在点x0可导”、“f(x)在开区间的导函数”和“导数”之间的联系,而要弄清这种联系的最好方法就是类比!用“速度与导数”进行类比。

二、目的分析

2.1学生的认知特点。在知识方面,对函数的极限已经熟悉,加上两个具体背景的学习,新知教学有很好的基础;在技能方面,高三学生,有很强的概括能力和抽象思维能力;在情感方面,求知的欲望强烈,喜欢探求真理,具有积极的情感态度。

2.2教学目标的拟定。鉴于这些特点,并结合教学大纲的要求以及对教材的分析,拟定如下的教学目标:

知识目标:

①理解导数的概念。

②掌握用定义求导数的方法。

③领悟函数思想和无限逼近的极限思想。

能力目标:

①培养学生归纳、抽象和概括的能力。

②培养学生的数学符号表示和数学语言表达能力。

情感目标:通过导数概念的学习,使学生体验和认同“有限和无限对立统一”的辩证观点。接受用运动变化的辩证唯物主义思想处理数学问题的积极态度。

三、过程分析

设计理念:遵循特殊到一般的认知规律,结合可接受性和可操作性原则,把教学目标的落实融入到教学过程之中,通过演绎导数的形成,发展和应用过程,帮助学生主动建构概念。

数学说课稿:导数概念2

一、教材分析

导数的概念是高中新教材人教A版选修2-2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1气球平均膨胀率--→瞬时膨胀率

问题2高台跳水的平均速度--→瞬时速度--→

根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点

二、教学目标

1、知识与技能:

通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。

2、过程与方法:

①通过动手计算培养学生观察、分析、比较和归纳能力

②通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法

3、情感、态度与价值观:

通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.三、重点、难点

重点:导数概念的形成,导数内涵的理解

难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵通过逼近的方法,引导学生观察来突破难点

四、教学设想(具体如下表)

教学环节教学内容师生互动设计思路创设情景、引入新课幻灯片

回顾上节课留下的思考题:

在高台跳水运动中,运动员相对水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.计算运动员在这段时间里的平均速度,并思考下面的问题:

(1)运动员在这段时间里是静止的吗?

(2)你认为用平均速度描述运动员的运动状态有什么问题吗?

首先回顾上节课留下的思考题:

在学生相互讨论,交流结果的基础上,提出:大家得到运动员在这段时间内的平均速度为“0”,但我们知道运动员在这段时间内并没有“静止”。为什么会产生这样的情况呢?

引起学生的好奇,意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确地刻画物体运动,我们有必要研究某个时刻的速度即瞬时速度。

使学生带着问题走进课堂,激发学生求知欲初步探索、展示内涵

根据学生的认知水平,概念的形成分了两个层次:

结合跳水问题,明确瞬时速度的定义

问题一:请大家思考如何求运动员的瞬时速度,如t=2时刻的瞬时速度?

提出问题一,组织学生讨论,引导他们自然地想到选取一个具体时刻如t=2,研究它附近的平均速度变化情况来寻找到问题的思路,使抽象问题具体化

理解导数的内涵是本节课的教学重难点,通过层层设疑,把学生推向问题的中心,让学生动手操作,直观感受来突出重点、突破难点

问题二:请大家继续思考,当Δt取不同值时,尝试计算的'值?

Δt

Δt

-0.10.1

-0.010.01

-0.0010.001

-0.00010.0001

-0.000010.00001

……….….…….…

学生对概念的认知需要借助大量的直观数据,所以我让学生利用计算器,分组完成问题二,帮助学生体会从平均速度出发,“以已知探求未知”的数学思想方法,培养学生的动手操作能力

问题三:当Δt趋于0时,平均速度有怎样的变化趋势?

Δt

Δt

-0.1-12.610.1-13.59

-0.01-13.0510.01-13.149

-0.001-13.09510.001-13.1049

-0.0001-130099510.0001-13.10049

-0.00001-13.0999510.00001-13.100049

……….….…….…

一方面分组讨论,上台板演,展示计算结果,同时口答:在t=2时刻,Δt趋于0时,平均速度趋于一个确定的值-13.1,即瞬时速度,第一次体会逼近思想;另一方面借助动画多渠道地引导学生观察、分析、比较、归纳,第二次体会逼近思想,为了表述方便,数学中用简洁的符号来表示,即

数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点,体验数学的简约美

问题四:运动员在某个时刻的瞬时速度如何表示呢?

引导学生继续思考:运动员在某个时刻的瞬时速度如何表示?学生意识到将代替2,可类比得到

与旧教材相比,这里不提及极限概念,而是通过形象生动的逼近思想来定义时刻的瞬时速度,更符合学生的认知规律,提高了他们的思维能力,体现了特殊到一般的思维方法

借助其它实例,抽象导数的概念

问题五:气球在体积时的瞬时膨胀率如何表示呢?

类比之前学习的瞬时速度问题,引导学生得到瞬时膨胀率的表示

积极的师生互动能帮助学生看到知识点之间的联系,有助于知识的重组和迁移,寻找不同实际背景下的数学共性,即对于不同实际问题,瞬时变化率富于不同的实际意义

问题六:如果将这两个变化率问题中的函数用来表示,那么函数在处的瞬时变化率如何呢?

在前面两个问题的铺垫下,进一步提出,我们这里研究的函数在处的瞬时变化率即在处的导数,记作

(也可记为)

引导学生舍弃具体问题的实际意义,抽象得到导数定义,由浅入深、由易到难、由特殊到一般,帮助学生完成了思维的飞跃;同时提及导数产生的时代背景,让学生感受数学文化的熏陶,感受数学来源于生活,又服务于生活。

循序渐进、延伸

拓展例1:将原油精炼为汽油、柴油、塑料等不同产品,需要对原油进行冷却和加热。如果在第xh时候,原油温度(单位:)为

(1)计算第2h和第6h时,原油温度的瞬时变化率,并说明它的意义。

(2)计算第3h和第5h时,原油温度的瞬时变化率,并说明它的意义。

步骤:

①启发学生根据导数定义,再分别求出和

②既然我们得到了第2h和第6h的原油温度的瞬时变化率分别为-3与5,大家能说明它的含义吗?

③大家是否能用同样方法来解决问题二?

④师生共同归纳得到,导数即瞬时变化率,可反映物体变化的快慢

步步设问,引导学生深入探究导数内涵

发展学生的应用意识,是高中数学课程标准所倡导的重要理念之一。在教学中以具体问题为载体,加深学生对导数内涵的理解,体验数学在实际生活中的应用

变式练习:已知一个物体运动的位移(m)与时间t(s)满足关系S(t)=-2t2+5t(1)求物体第5秒和第6秒的瞬时速度

(2)求物体在t时刻的瞬时速度

(3)求物体t时刻运动的加速度,并判断物体作什么运动?

学生独立完成,上台板演,第三次体会逼近思想

目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律归纳总结、内化知识

1、瞬时速度的概念

2、导数的概念

3、思想方法:“以已知探求未知”、逼近、类比、从特殊到一般

引导学生进行讨论,相互补充后进行回答,老师评析,并用幻灯片给出

让学生自己小结,不仅仅总结知识更重要地是总结数学思想方法。这是一个重组知识的过程,是一个多维整合的过程,是一个高层次的自我认识过程,这样可帮助学生自行构建知识体系,理清知识脉络,养成良好的学习习惯

作业安排、板书设计(必做)第10页习题A组第2、3、4题

(选做):思考第11页习题B组第1题作业是学生信息的反馈,能在作业中发现和弥补教学中的不足,同时注重个体差异,因材施教

附后板书设计清楚整洁,便于突出知识目标

五、学法与教法

学法与教学用具

学法:

(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。(如问题2的处理)

(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。(如问题3的处理)

(3)探究学习:引导学生发挥主观能动性,主动探索新知。(如例题的处理)

教学用具:电脑、多媒体、计算器

教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动--师生互动、共同探索。②导--教师指导、循序渐进

(1)新课引入--提出问题,激发学生的求知欲

(2)理解导数的内涵--数形结合,动手计算,组织学生自主探索,获得导数的定义

(3)例题处理--始终从问题出发,层层设疑,让他们在探索中自得知识

(4)变式练习--深化对导数内涵的理解,巩固新知

六、评价分析

这堂课由平均速度到瞬时速度再到导数,展示了一个完整的数学探究过程。提出问题、计算观察、发现规律、给出定义,让学生经历了知识再发现的过程,促进了个性化学习。

从旧教材上看,导数概念学习的起点是极限,即从数列的极限,到函数的极限,再到导数。这种概念建立方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质的理解。

新教材不介绍极限的形式化定义及相关知识,而是用直观形象的逼近方法定义导数。

通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),学生容易理解;

这样定义导数的优点:

1.避免学生认知水平和知识学习间的矛盾;

2.将更多精力放在导数本质的理解上;

3.学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义.(附)板书设计

第二篇:导数的概念教案

【教学课题】:§2.1 导数的概念(第一课时)

【教学目的】:能使学生深刻理解在一点处导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数在一点处的导数;明确一点处的导数与单侧导数、可导与连续的关系。

【教学重点】:在一点处导数的定义。【教学难点】:在一点处导数的几种等价定义及其应用。【教学方法】:系统讲授,问题教学,多媒体的利用等。【教学过程】:

一)导数的思想的历史回顾

导数的概念和其它的数学概念一样是源于人类的实践。导数的思想最初是由法国数学家费马(Fermat)为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton)和德国数学家莱布尼兹(Leibniz)在研究力学与几何学的过程中建立起来的。

二)两个来自物理学与几何学的问题的解决

问题1(以变速直线运动的瞬时速度的问题的解决为背景)已知:自由落体运动方程为:s(t)12gt,t[0,T],求:落体在t0时刻(t0[0,T])的瞬时速度。2t0t

问题解决:设t为t0的邻近时刻,则落体在时间段[t0,t](或[t,t0])上的平均速度为

v若tt0时平均速度的极限存在,则极限

s(t)s(t0)

tt0vlimtt0s(t)s(t0)

tt0为质点在时刻t0的瞬时速度。

问题2(以曲线在某一点处切线的斜率的问题的解决为背景)已知:曲线yf(x)上点M(x0,y0),求:M点处切线的斜率。

下面给出切线的一般定义;设曲线C及曲线C上的一点M,如图,在M外C上另外取一点N,作割线MN,当N沿着C趋近点M时,如果割线MN绕点M旋转而趋于极 限位置MT,直线MT就称为曲线C在点M处的切线。

问题解决:取在C上M附近一点N(x,y),于是割线PQ的斜率为

tanyy0f(x)f(x0)(为割线MN的倾角)xx0xx0当xx0时,若上式极限存在,则极限

ktanf(x)fx(0)(为割线MT的倾角)limxx0xx0为点M处的切线的斜率。

上述两问题中,第一个是物理学的问题,后一个是几何学问题,分属不同的学科,但问 题的解决都归结到求形如

limxx0f(x)f(x0)

(1)

xx0的极限问题。事实上,在学习物理学时会发现,在计算诸如物质比热、电流强度、线密度等问题中,尽管其背景各不相同,但最终都化归为讨论形如(1)的极限问题。也正是这类问题的研究,促使“导数”的概念的诞生。

三)导数的定义

定义

设函数yf(x)在x0的某邻域内有定义,若极限

xx0limf(x)f(x0)

xx0存在,则称函数f在点x0处可导,并称该极限为f在点x0处的导数,记作f'(x0)。即

f'(x0)limxx0f(x)f(x0)

(2)

xx0也可记作yxx,odydx,xxodf(x)。若上述极限不存在,则称f在点x0处不可导。

dxxxof在x0处可导的等价定义:

设xx0x,yf(x0x)f(x0),若xx0则等价于x0,如果 函数f在点x0处可导,可等价表达成为以下几种形式: f'(x0)limxx0yf(x)f(x0)

(3)

f'(x0)limx0xxx0f'(x0)limx0f(x0x)f(x0)

(4)

xf'(x0)lim四)

f(x0)f(x0)0

(5)

利用导数定义求导数的几个例子

例1 求f(x)x2在点x1处的导数,并求曲线在点(1,1)处的切线方程。解 由定义

yf(1x)f(1)(1x)21f(1)limlimlim

x0xx0x0xx'2xx2limlim(2x)2 x0x0x于是曲线在(1,1)处的切线斜率为2,所以切线方程为y12(x1),即y2x1。

例2 设函数f(x)为偶函数,f(0)存在,证明:f(0)0。

(x)

f(x)f(x)证

f(x)f 又f(0)lim

limx0'x0f(0x)f(0)f(x)f(0)lim x0xxf(x)f(0)f[0(x)]f(0)limf(0)

x0xxf(0)0

注意:f'(x0)limf(x0)f(x0)这种形式的灵活应用。此题的0为x。

1xsin,x0x例3 讨论函数f(x) 在x0处的连续性,可导性。0,x0解

首先讨论f(x)在x0处的连续性:limf(x)limxsinx0x010f(0)x即f(x)在x0处连续。

再讨论f(x)在x0处的可导性:

x0limf(0x)f(0)limx0x

xsin101x

此极限不存在 limsinx0xx即f(x)在x0处不可导。

怎样将此题的f(x)在x0的表达式稍作修改,变为f(x)在x0处可导?

1n1xsinx,0x答 f(x) n1,2,3,即可。

0,x0四)可导与连续的关系

由上题可知;在一点处连续不一定可导。反之,若设f(x)在点x0可导,则

yf'(x0)

x0xlim由极限与无穷小的关系得:

yf'(x0)xo(x),所以当x0,有y0。即f在点x0连续。

故在一点处连续与可导的关系是:连续不一定可导,可导一定连续。

五)单侧导数的概念

例4 证明函数f(x)|x|在x0处不可导。证明 limx0f(x)f(0)xf(x)f(0)xlim1limlim1,x0xx0x0xx0x0limx0f(x)f(0)极限不存在。

x0故f(x)|x|在x0处不可导。

在函数分段点处或区间端点等处,不得不考虑单侧导数:

定义

设函数yf(x)在点x0的某右邻域(x0,x0)上有定义,若右极限

x0limf(x0x)f(x0)ylim(0x)x0xx存在,则称该极限为f在点x0的右导数,记作f'(x0)。

左导数

f'(x0)ylim。x0x左、右导数统称为单侧导数。

导数与左、右导数的关系:若函数yf(x)在点x0的某邻域内有定义,则f'(x0)存在f'(x0),f'(x0)都存在,且f'(x0)=f'(x0)。例5 设f(x)解 由于 1cosx, x0,讨论f(x)在x0处的可导性。

x0x , f'(0)limx0f(x0x)f(x0)1cosxlim0 x0xxf(x0x)f(x0)xlim1 x0xxf'(0)limx0从而f'(0)f'(0),故f(x)在x0处不可导。

六)小结: 本课时的主要内容要求:

① 深刻理解在一点处导数的概念,能准确表达其定义;

② 注意f'(x0)limf(x0)f(x0)这种形式的灵活应用。

0③ 明确其实际背景并给出物理、几何解释; ④ 能够从定义出发求某些函数在一点处的导数;

⑤ 明确导数与单侧导数、可导与连续的关系。

第三篇:导数的概念教学设计

《导数的概念》教学设计

1.教学目标

(1)知识与技能目标:掌握导数的概念,并能够利用导数的定义计算导数.(2)过程与方法目标:通过引入导数的概念这一过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想;提高类比归纳、抽象概括的思维能力.

(3)情感、态度与价值观目标:

通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.

2.教学重、难点

重点:导数的定义和利用定义如何计算导数. 难点:对导数概念的理解.

3.教学方法

1.教法:引导式教学法

在提出问题的背景下,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念的形成.

2.教学手段:多媒体辅助教学

4.教学过程

(一)情境引入

导数的概念和其它的数学概念一样是源于人类的实践。导数的思想最初是由法国数学家费马(Fermat)为研究极值问题而引入的,但导数作为微积分的最主要的概念,却是英国数学家牛顿(Newton)和德国数学家莱布尼兹(Leibniz)在研究力学与几何学的过程中建立起来的。

17世纪数学家遇到的三类问题:

一是光的反射问题。光的反射和折射在17世纪是一个十分盛行的研究课题,早在公元1世纪,古希腊数学家海伦(Heron)就已经证明了光的反射定律:光射向平面时,入射角等于反射角。海伦还将该定律推广到圆弧的情形,此时,入射光与反射光与圆弧的切线所成角相等。那么,对于其他曲线,光又如何反射呢?这就需要确定曲线的切线。

CBCBAA

图 1 光在平面上的反射 图 2 光在球面上的反射

二是曲线运动的速度问题。对于直线运动,速度方向与位移方向相同或相反,但如何确定曲线运动的速度方向呢?这就需要确定曲线的切线。

三是曲线的交角问题。曲线的交角是一个古老的难题。自古希腊以来,人们对圆弧和直线构成的角——牛头角(图3中AB弧与AC构成的角)和弓形角(图4中AB与ACB弧所构成的角)即有过很多争议。17世纪数学家遇到的更一般的问题是:如何求两条相交曲线

所构成的角呢?这就需要确定曲线在交点处的切线。(二)探索新知

问题1 已知:匀加速直线运动方程为:s(t)v0t刻(t0[0,T])的瞬时速度。

问题解决:设t为t0的邻近时刻,则落体在时间段[t0,t](或[t,t0])上的平均速度为

12at,t[0,T],求:物体在t0时2v若tt0时平均速度的极限存在,则极限

s(t)s(t0)

tt0vlimtt0s(t)s(t0)

tt0为质点在时刻t0的瞬时速度。

问题2已知:曲线yf(x)上点M(x0,y0),求:M点处切线的斜率。

下面给出切线的一般定义;设曲线C及曲线C上的一点M,如图,在M外C上另外取一点N,作割线MN,当N沿着C趋近点M时,如果割线MN绕点M旋转而趋于极限位置MT,直线MT就称为曲线C在点M处的切线。

问题解决:取在C上M附近一点N(x,y),于是割线PQ的斜率为

tanyy0f(x)f(x0)(为割线MN的倾角)xx0xx0当xx0时,若上式极限存在,则极限

ktan为点M处的切线的斜率。

导数的定义

定义

设函数yf(x)在x0的某邻域内有定义,若极限limxx0f(x)fx(0)(为割线MT的倾角)limxx0xx0f(x)f(x0)存在,则称函数

xx0

f在点x0处可导,并称该极限为f在点x0处的导数,记作f'(x0)。

即 f'(x0)(2)

也可记作yxx,of(x)fx(0)

limxx0xx0dydx,xxodf(x)。若上述极限不存在,则称f在点x0处不可导。

dxxxof在x0处可导的等价定义:

设xx0x,yf(x0x)f(x0),若xx0则等价于x0,如果 函数f在点x0处可导,可等价表达成为以下几种形式:

f'(x0)limxx0yf(x)f(x0)

f'(x0)limx0xxx0f'(x0)limx0f(x0x)f(x0)

x单侧导数的概念

在函数分段点处或区间端点等处,不得不考虑单侧导数:

定义

设函数yf(x)在点x0的某右邻域(x0,x0)上有定义,若右极限

x0limf(x0x)f(x0)ylim(0x)xx0x存在,则称该极限为f在点x0的右导数,记作f'(x0)。

左导数

f'(x0)ylim。x0x左、右导数统称为单侧导数。

导数与左、右导数的关系:若函数yf(x)在点x0的某邻域内有定义,则f'(x0)存在f'(x0),f'(x0)都存在,且f'(x0)=f'(x0)。

(三)知识巩固

2例题1 求f(x)x在点x1处的导数,并求曲线在点(1,1)处的切线方程。

解:由定义可得:

yf(1x)f(1)(1x)21f'(1)limlimlim

x0xx0x0xx2xx2limlim(2x)2 x0x0x附注:在解决切线问题时,要熟悉导数的定义,并能通过导数的几何意义来解决一般问题

例题2设函数f(x)为偶函数,f(0)存在,证明:f(0)0。

'f(x)f(x)f(x)f(x)

f(0x)f(0)f(x)f(0)lim x0xxf(x)f(0)f[0(x)]f(0)limf(0)

x0xx 又f(0)lim x0 limx0f(0)0

附注:需要注意公式f'(x0)limxx0f(x)f(x0)的灵活运用,它可以变化成其他的形式。

xx0例3 证明函数f(x)|x|在x0处不可导。

证明

x0limf(x)f(0)xf(x)f(0)xlim1limlim1,x0x0x0x0xx0xlimx0f(x)f(0)极限不存在。

x0故f(x)|x|在x0处不可导。

附注:判断一个函数在某点处是否可导,只需要考虑该点处的左右导数是否相等即可。

(四)应用提高 求曲线yx在点(-1,-1)处的切线方程为(A)x2A.y=2x+1 B.y=2x-1 C.y=-2x-3 D.y=-2x-2

(五)小结

本节课主要学习导数的基本概念,在经历探究导数概念的过程中,让学生感受导数的形成,并对导数的几何意义有较深刻的认识。

本节课中所用数学思想方法:逼近、类比、特殊到一般。

(六)作业布置

1.已知f'(1)2012,计算:

f(1x)f(1)f(1x)f(1)(2)lim

x0x0xxf(1)f(1x)f(12x)f(1)(3)lim(4)lim

x0x04xx(1)lim2.计算函数f(x)2x3在点(1,1)处切线的方程。2

第四篇:高二数学导数与导函数的概念教案

高二数学导数与导函数的概念教案

教学目标:

1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义;

2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力

3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。教学重点:

1、导数的求解方法和过程;

2、导数符号的灵活运用 教学难点:

1、导数概念的理解;

2、导函数的理解、认识和运用 教学过程:

一、情境引入

在前面我们解决的问题:

1、求函数f(x)x在点(2,4)处的切线斜率。2yf(2x)f(x)4x,故斜率为4 xx2、直线运动的汽车速度V与时间t的关系是Vt1,求tto时的瞬时速度。

2Vv(tot)v(to)2tot,故斜率为4 tt

二、知识点讲解

上述两个函数f(x)和V(t)中,当x(t)无限趋近于0时,个常数。

归纳:一般的,定义在区间(a,b)上的函数f(x),xo(a,b),当x无限趋近于0时,VV()都无限趋近于一txyf(xox)f(xo)无限趋近于一个固定的常数A,则称f(x)在xxo处可导,并称Axx为f(x)在xxo处的导数,记作f'(xo)或f'(x)|xxo,上述两个问题中:(1)f'(2)4,(2)V'(to)2to

三、几何意义:

我们上述过程可以看出

f(x)在xx0处的导数就是f(x)在xx0处的切线斜率。

四、例题选讲

1、求下列函数在相应位置的导数

2(1)f(x)x1,x2(2)f(x)2x1,x2

用心 爱心 专心

121号编辑

(3)f(x)3,x2

2、函数f(x)满足f'(1)2,则当x无限趋近于0时,f(1x)f(1)

2xf(12x)f(1)(2)x(1)变式:设f(x)在x=x0处可导,(3)f(x04x)f(x0)无限趋近于1,则f(x0)=___________ xf(x04x)f(x0)无限趋近于1,则f(x0)=________________ xf(x02x)f(x02x)所对应的常数与f(x0)的关系。

x(4)(5)当△x无限趋近于0,总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。例

3、若f(x)(x1),求f'(2)和(f(2))' 注意分析两者之间的区别。例4:已知函数f(x)2x,求f(x)在x2处的切线。

导函数的概念涉及:f(x)的对于区间(a,b)上任意点处都可导,则f(x)在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为f(x)的导函数,记作f'(x)。

五、小结与作业

用心 爱心 专心

121号编辑

第五篇:13252ja_1.1.2导数的概念教案

上教考资源网 助您教考无忧

§1.1.2导数的概念

教学目标

1.了解瞬时速度、瞬时变化率的概念;

2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; 3.会求函数在某点的导数

教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念. 教学过程: 一.创设情景

(一)平均变化率

(二)探究:计算运动员在0t6549这段时间里的平均速度,并思考以下问题:

⑴运动员在这段时间内使静止的吗?

⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

探究过程:如图是函数h(t)=-4.9t2+6.5t+10的图像,结合图形可知,h(h(65)h(0)0(s/m),065496549)h(0),h 所以v496549虽然运动员在0t这段时间里的平均速度为0(s/m),但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 二.新课讲授 1.瞬时速度

我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,t2时的瞬时速度是多少?

ot 版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

考察t2附近的情况:

思考:当t趋近于0时,平均速度v有什么样的变化趋势?

结论:当t趋近于0时,即无论t从小于2的一边,还是从大于2的一边趋近于2时,平均速度v都趋近于一个确定的值13.1.

从物理的角度看,时间t间隔无限变小时,平均速度v就无限趋近于史的瞬时速度,因此,运动员在t2时的瞬时速度是13.1m/s 为了表述方便,我们用limh(2t)h(2)tt013.1

表示“当t2,t趋近于0时,平均速度v趋近于定值13.1”

小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。2 导数的概念

从函数y=f(x)在x=x0处的瞬时变化率是: x0limf(x0x)f(x0)xlimfx

'x0'我们称它为函数yf(x)在xx0出的导数,记作f(x0)或y|xx,即

0 f(x0)limf(x0x)f(x0)x

x0说明:(1)导数即为函数y=f(x)在x=x0处的瞬时变化率

(2)xxx0,当x0时,xx0,所以f(x0)lim三.典例分析

例1.(1)求函数y=3x2在x=1处的导数.分析:先求Δf=Δy=f(1+Δx)-f(1)=6Δx+(Δx)再求fx6x再求limfx6

f(x)f(x0)xx0

x0x0解:法一(略)

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧 法二:y|x1lim3x31x122x1lim3(x1)x1x1lim3(x1)6

x12(2)求函数f(x)=xx在x1附近的平均变化率,并求出在该点处的导数.

解:yx(1x)(1x)2xyx223x

f(1)limx0(1x)(1x)2xlim(3x)3

x0例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh时,原油的温度(单位:C)为f(x)x27x15(0x8)和第6h时,原油温度的瞬时变化率,并说明它们的意义.

解:在第2h时和第6h时,原油温度的瞬时变化率就是f'(2)和f'(6)根据导数定义,2,计算第2h时fxf(2x)f(x0)x2

(2x)7(2x)15(27215)xflim(x3)3

x0x3

所以f(2)limx同理可得:f(6)5 x0在第2h时和第6h时,原油温度的瞬时变化率分别为3和5,说明在2h附近,原油温度大约以3C/h的速率下降,在第6h附近,原油温度大约以5C/h的速率上升.

'注:一般地,f(x0)反映了原油温度在时刻x0附近的变化情况. 四.课堂练习

21.质点运动规律为st3,求质点在t3的瞬时速度为.

2.求曲线y=f(x)=x3在x1时的导数.

3.例2中,计算第3h时和第5h时,原油温度的瞬时变化率,并说明它们的意义. 五.回顾总结

1.瞬时速度、瞬时变化率的概念

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

2.导数的概念

六.布置作业

版权所有@中国教育考试资源网

下载数学说课稿:导数概念[五篇材料]word格式文档
下载数学说课稿:导数概念[五篇材料].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    导数的概念说课提纲

    《导数的概念》说课提纲 我主讲的课程是《高等数学II》,共80学时,是主要面向财经类、管理类、农科类等本科专业开设的一门重要基础理论课。 一、教学大纲要求 通过本课程的教......

    高中导数概念引入的教学研究

    投稿日期:2015.2.3 所投栏目:(高中版)课堂教学研究 手机号码:*** 电子邮箱:sx9106240@126.com 高中导数概念引入的教学研究 孙旋 南京师范大学 210000 摘要:导数是微积分......

    高考数学导数题

    已知函数f(x)=x^2+2x+alnx (1)若函数f(x)在区间【0,1】上恒为单调函数,求a范围 (2)当t≥1时不等式f(2t-1)≥2f(t)-3恒成立,求a的范围(1) f'(x)=2x+2+a/x=(2x^2+2x+a)/x 因为x>0,所以f'(x)的......

    高二数学导数测试题

    高二数学导数测试题一、选择题(每小题5分,共70分.每小题只有一项是符合要求的)1.设函数可导,则等于().A.B.C.D.以上都不对2.已知物体的运动方程是(表示时间,表示位移),则瞬时速度为0的时刻是().A.0......

    函数概念说课稿

    函数概念说课稿 函数概念说课稿1 一、本课时在教材中的地位及作用教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这......

    2015年高考数学第一轮复习资料13(导数的概念及其运算)

    第三章 导数及其应用学案13 导数的概念及运算自主梳理1.函数的平均变化率一般地,已知函数y=f(x),x0,x1是其定义域内不同的两点,记Δx=x1-x0,Δy=y1-Δyy0=f(x1)-f(x0)=f(x0+Δx)-f(x0),则当Δ......

    长沙市一中教案_高二理科数学《1.1.2导数的概念》(最终五篇)

    §1.1.2导数的概念 教学目标: 1.了解瞬时速度、瞬时变化率的概念; 2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; 3.会求函数在某点的导数 教学重点: 瞬时速度、......

    2012届高考数学一轮复习教案:13.1 导数的概念与运算

    *第十三章 导数 ●网络体系总览 导数实际背景导数定义导函数基本导数公式求简单函数的导数导数的应用导数运算法则判断函数的单调性判断函数的极大(小)值求函数的最大(小)值......