专题:常用函数极限的求法
-
浅谈函数极限的求法
浅谈函数极限的求法摘要:函数极限是数学分析的基本内容之一,也是解决其它问题的基础。如何求出已知函数的极限是学习微积分必须掌握的基本技能。本文系统地介绍了利用定义、两
-
函数极限的若干求法 20121109
高等数学中极限的分析与研究 【摘 要】极限是高等数学中一个很重要的基础知识点,是微积分的前提,因此函数极限的求解是非常重要的。本文针对高等数学中极限的求解方法进行了一
-
函数极限的求法(正文)(五篇材料)
目录 0.引言 .......................................................... 1 1.函数极限的定义 ................................................ 1 2. 一元函数极限的求
-
浅析极限的若干求法
科技信息 ○高校讲台○ SCIENCE & TECHNOLOGY INFORMATION2007 年第 23 期浅析极限的若干求法孟金涛( 郑州航空工业管理学院数理系河南 郑州 450015 )摘要: 极限理论是高等
-
浅谈数列极限的求法
浅谈数列极限的求法龙门中小李海东摘要:本文主要介绍了数列极限的几种求法,并通过一个例题说明利用函数极限的求法,帮助寻找数列极限的方法,帮助学生理解和掌握求极限的方法。关
-
函数极限
习题
1.按定义证明下列极限:
limx6x5=6 ; lim(x2-6x+10)=2; x2x
x251 ; lim lim2xx1x2
limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf (x) ≠ A. xx0 -
函数极限
《数学分析》教案第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些
-
函数极限
数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际
-
高数极限求法总结
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。 为什么第一章如此重要? 各个章节
-
函数极限证明
函数极限证明记g(x)=lim^(1/n),n趋于正无穷;下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。不妨设f1(x)趋于a;作b>a>=0,M>1;那么存在N1,当x>N1,有a/MN2
-
1-2函数极限
高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限
-
函数极限概念
一. 函数极限的概念
1.x趋于时函数的极限
设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当 -
2.3函数极限
高三极限同步练习3(函数的极限)
求第一类函数的极限
例1、讨论下列函数当x,x,x时的极限:
1(1)f(x)1 2
(2)f(x)x1 x1
(x0)2(3)h(x)x2 x0)x1求函数的左右极限
例2、讨论下列函数在点x1处的 -
数学分析中极限的求法总结
数学分析中极限的求法总结1.1 利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数
-
高等数学函数极限练习题
设f(x)2x1x,求f(x)的定义域及值域。 设f(x)对一切实数x1,x2成立f(x1x2)f(x1)f(x2),且f(0)0,fa,求f(0)及f(n).(n为正整数) 定义函数I(x)表示不超过x的最大整数叫做x的取整函数,若
-
第一章函数与极限(本站推荐)
第一章函数与极限
第一节 映射与函数
一、集合
1、集合的概念
集合是数学中的一个基本概念,我们先通过例子来说明这个概念。例如,一个书柜的书构成一个集,一间教室里的学生构成 -
x01-1函数极限.PPT.Convertor
第1章函数极限和连续函数§ 1-1函数的极限2定义或一. 函数在某点的极限1.描述性定义32.函数极限的几何意义4极限不存在的例子56定理:单侧极限记为7例证明极限:P0注: 用定义证
-
函数的极限和函数的连续性(本站推荐)
第一部分高等数学第一节函数的极限和函数的连续性考点梳理一、函数及其性质1、 初等函数幂函数:yxa(aR)指数函数yax(a1且a1)对数函数:ylogax(a0且a1)三角函数:sin x , cos x ,