专题:初中平面几何定理
-
初中平面几何重要定理汇总
初中平面几何重要定理汇总 1、勾股定理(毕达哥拉斯定理)(直角三角形的两直角边分别是a、b,斜边是c;则a*a+b*b=c*c) 2、射影定理(欧几里得定理)(直角三角形中,斜边上的高是两直角
-
初中平面几何的60个定理
1、勾股定理(毕达哥拉斯定理) 小学都应该掌握的重要定理 2、射影定理(欧几里得定理) 重要 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分重要 4、四边形
-
高中平面几何定理
(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两
-
高中平面几何60大定理
1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于
-
高中数学常用平面几何名定理
高中数学常用平面几何名定理定理1 Ptolemy定理托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。定理2 Ceva定理定理3 Menelaus
-
高中数学联赛平面几何定理(五篇模版)
①鸡爪定理:设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC。 由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=(180°-∠ABC)/2 ∴∠IBC+∠JBC=∠ABC/
-
备战2014年数学中考————初中平面几何定理公理总结
初中平面几何定理公理总结
一、线与角
1、两点之间,线段最短
2、经过两点有一条直线,并且只有一条直线
3、对顶角相等;同角的余角(或补角)相等;等角的余角(或补角)相等
4、经过直线 -
初中平面几何证明题
九年级数学练习题1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG求证:S△ABCS△AEG2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的
-
奥数平面几何几个重要定理(5篇范文)
平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在ABC内一点P,该点与ABC的三个顶点相连所在的三条直线分别交ABC三边AB、BC、CA于点D、E、F,且D、E、F
-
部分课外平面几何定理证明(含5篇)
部分课外平面几何定理证明 一.四点共圆 很有用的定理,下面的定理证明中部分会用到这个,这也是我把它放在第一个的原因。 这个定理根据区域的不同,在中考有的地方能直接用,有的不
-
认识平面几何的61个著名定理
【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理)★2、射影定理(欧几里得定理)★3、三角形的三条中线交于一点,并且,各中线被
-
初中定理
初中几何证明的依据
1.两点连线中线段最短.
2.同角(或等角)的余角相等. 同角(或等角)的补角相等.对顶角相等.
3.平面内经过一点有且只有一条直线与已知直线垂直. 直线外一点与 -
刍议初中平面几何教学
刍议初中平面几何教学 摘 要: 提高平面几何教学质量,一直是初中数学老师的追求,也是困扰师生的一个难题。作者就如何从代数过渡到平几教学,平几入门教学方法,对学生采取适当的帮
-
高中数学竞赛中平面几何涉及的定理
1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于
-
李明波四点定理的平面几何证明
李明波四点定理的平面几何证明郝锡鹏提要2009年9月19日,李明波导出和角余弦恒等式 cos2cos2cos2()2coscoscos()1 并用此给出他四点定理的一个平面几何证明。 1和角余弦恒等式
-
初中数学相关定理[范文大全]
1,三角形内角和定理三角形三个内角的和等于180°
2, 推论1直角三角形的两个锐角互余
3, 推论2三角形的一个外角等于和它不相邻的两个内角的和
4,推论3三角形的一个外角大于 -
平面几何的几个重要定理--西姆松定理答案
《西姆松定理及其应用》 西姆松定理:若从ABC外接圆上一点P作BC、AB、AC的垂线, 垂足分别为D、E、F,则D、E、F三点共线;证明:连接DE、DF,显然,只需证明BDEFDC即可;BDPBEP90B、E、P、
-
高中数学培优材料1:平面几何(梅涅劳斯定理)
国光中学数学培优系列讲座——竞赛二试系列讲座高中数学培优讲座第一讲:平面几何——梅涅劳斯定理、塞瓦定理在中国数学奥林匹克(CMO)的六道试题中,以及国际数学奥林匹克(IMO)的