专题:等差数列习题集
-
等差数列习题集(★)
(一)一个影剧共有28排座位,从第1排起,以后每排都比前一排多2个座位,第28排有78个座位,这个影院共有多少个座位?(二)5,9,13,17…….的前30项之和是多少? (三)1-100这100个自然数中能
-
等差数列专题
等差数列的运算和性质专题复习【方法总结1】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公
-
习题集
演讲与口才习题集 绪论 一、思考题: 1、为什么说演讲是一种最高级、最完美、最富有审美特征的口语表达形式? 2、演讲和口才的含义是什么?二者之间存在什么关系? 3、怎样理解演讲
-
习题集
习题集第一部分 -、判断题: 1.取得食品生产许可的食品生产者在其生产场所销售其生产的食品,不需要取得食品流通的许可;取得餐饮服务许可的餐饮服务提供者在其餐饮服务场所出售
-
习题集
山东2012年会计从业无纸化考试《财经法规》习题集中华会计考试网单选题1、会计资料移交后,如果发现是移交人员在会计工作期间内所发生的问题,由负责。A.原移交人员B.当时的监
-
如何证明等差数列
如何证明等差数列设等差数列an=a1+(n-1)d最大数加最小数除以二即/2=a1+(n-1)d/2{an}的平均数为Sn/n=/n=a1+(n-1)d/2得证1三个数abc成等差数列,则c-b=b-ac^2(a+b)-b^2(c+a)=(c
-
等差数列及习题
等差数列
通项公式 a(n)=a+(n-1)×d项数n=(末项-首项)/公差+1,是正整数,等差数列的首项和公差已知,那么,这个等差数列就确定了。从通项公式可以看出,a(n)是n的一次函数(d≠0)或 -
等差数列教案(精选)
等差数列教案
一、 教材分析
从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另 -
学案:等差数列及和
等差数列及其前n项和
一.高考考纲
1.考查运用基本量法求解等差数列的基本量问题.掌握等差数列的定义与性质、通项公式、前n项和公式等.
2.考查等差数列的性质、前n项和公式及综合 -
《等差数列》说课稿
《等差数列》说课稿 《等差数列》说课稿1 一、说教材等差数列为人教版必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作
-
等差数列说课稿
等差数列说课稿 等差数列说课稿1 首先,我对本教材进行分析。一、说教材的地位和作用《等差数列》是选自北京师范大学出版社普通高中课程标准实验教科书数学必修5的第一章数列
-
等差数列作业
等差数列作业
1.在等差数列an中,若
a4a6a8a10a12120,则2a10a12__.
2.等差数列an中,若a1510,a4590,则a60_.
3.在等差数列中,已知a 5 10a,1231求首项与公差.4.梯子的最高一级宽3 -
等差数列知识点
精英辅导学校杨景勋专用2011年12月16日星期五
(一)等差数列I1、等差数列{an}中,a1=1,公差d=3,an=2005则n=_____
2、等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为______ -
等差数列练习
等差数列练习
一、选择题
1.在等差数列{an}中,a1=21,a7=18,则公差d=
A.12B.13C.-12D.-13
2.在等差数列{an}中,a2=5,a6=17,则a14=
A.45B.41C.39D.37
3.已知数列{an}对任意的正整数n,点Pn(n,an)都在 -
等差数列说课稿
《等差数列》说课稿各位领导、各位专家,你们好!
我说课的课题是《等差数列》。我将从以下五个方面来分析本课题:
一、教材分析
1.教材的地位和作用:
《等差数列》是北师大版新课 -
《等差数列》检测
高2011届《等差数列》单元检测
班级姓名
一、选择题(每小题5分,共25分)
1、设数列{an}的通项公式为an=n2-5n+4,则数列{an}开始递增的最小项是
A、a1B、a2C、a3D、a2和a3
2、已知 -
等差数列练习题
等差数列练习题
班级:__姓名:____
1.已知等差数列{an}中,a5+a9-a7=10,记Sn=a1+a2+…+an,则S13的值为 A.130B.260C.156D.168
2.等差数列{an}的前n项和为Sn,且S3=6,a3=4,则公差d等于
A.1B.5
3
C.2D.3
3.设 -
等差数列证明[推荐]
设数列{an}的前n项和为Sn,若对于所有的正整数n,都有Sn=n(a1+an)/2,求证:{an}是等差数列
解:证法一:令d=a2-a1,下面用数学归纳法证明an=a1+(n-1)d(n∈N*) ①当n=1时,上述等式为恒等式a1=a1,
当n