专题:概率期末
-
概率期末3
二、题型:选择(每题4分,一共20分);填空(每题3分,一共30分);计算(每题10分,一共40分);应用(每题10分,一共10分)3个学分(即48学时)概率期末的重点:
计算题:二维连续型随机变量相关的概率问题;二维离 -
概率期末复习
第二章
随机变量
1、离散型:两点分布、二项分布、泊松分布
2、连续型:均匀分布、指数分布、正态分布
分布函数的定义F(x)P(Xx)
随机变量函数Yg(x)的分布
两种方法:
A、F(y)P(Yy -
概率期末重点(共五则)
3个学分(即48学时)概率期末的重点:
计算题:二维连续型随机变量相关的概率问题;二维离散型随机变量分布律的确定(用到条件概率公式);二维连续型随机变量函数的概率密度函数求解;求某个 -
南京工业大学概率统计期末试题及解答
南京工业大学概率统计试题(A)卷
试题标准答案
2009—2010学年第二学期使用班级一.填空(每空2分,共20分)
ex,x011/21、1/6,1/3。2、1。3、fX(x);1e2e。4、85;37。5、0.6。6、U~t(9), -
概率的进一步认识,期末复习试卷
概率的进一步认识 期末复习题 一、选择题 1. 下列事件属于必然事件的是 A.打开电视,正在播放新闻 B.我们班的同学将会有人成为航天员 C.实数a<0,则2a<0 D.新疆的冬天不下雪 2.在计
-
概率教案
概率的预测 一、 教学目标 掌握通过逻辑分析用计算的方法预测概率,知道概率的预测,概率的频率含义,所有事件发生的概率和为1;经历各种疑问的解决,体验如何预测一类事件发生的概率
-
概率教案
一、授课题目 1.4等可能概型(古典概型) 二、目的要求 教学目的:(1)理解基本事件、等可能事件等概念; (2)会用枚举法求解简单的古典概型问题; 教学要求:要求学生熟练掌握等可能概率,
-
概率复习
第一章、概率论的基本概念
考点:
事件的关系及运算,概率的公理化定义及其性质,古典概型,条件概率的定义及贝叶斯公式,n重伯努利
试验及二项概率公式。
参考:例1.4、例1.6、例1.26 -
概率试题
08~09(1)试题(2008.12.24)一、填空(每题5分,共5题)1、已知袋中有1个蓝球、2个红球、3个黑球、4个白球,从中不返回的取球,一次一个。则第一、二次都是红球的概率是。2、已知三个随机变
-
概率小结
理科第二学段数学学习报告 概率全章小结 班级: 姓名 评定:【引语】 总结应做到“瞻前顾后”。一份认真的总结,应是对自己充分认识的基础上的行动纲领的设计,应是避免盲目乐观
-
考研概率
第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式P(A)1P(A)。第二句话:若给出的试验可分解成(0-1)的n
-
概率题目
1. 有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2
名女生的概率是多少?2. 已知10个产品中有3个次品,现从其中抽取若干个产品,要使者3个次品
全部被抽出的概率不小于0 -
概率论文~
概率论与数理统计发展史
1014101班 1101410112 化工学院 张晨阳
一、历史背景
17、18世纪,数学获得了巨大的进步。数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方 -
海南大学概率期末重点 2(共5篇)
概率复习重点,
二、题型:选择(每题4分,一共20分);填空(每题3分,一共30分);计算(每题10分,一共40分);应用(每题10分,一共10分)
三、其中2个学分(即32学时)概率期末的重点:
计算题:二维离散型随机变 -
概率口诀【考研】
第一章 随机事件 互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。 第二、三章 一维、二维随机变量 1)离散问模型,分布列表清,边
-
土木概率论文
随着城市建设和公路建设的不断升温,土木工程专业的就业形势近年持续走高。找到一份工作,对大多数毕业生来讲并非是难事,然而土木工程专业的就业前景与国家政策及经济发展方向密
-
概率教案(精选5篇)
概率的计算教案 一、教学目标:1.知识与技能 2.情感态度与价值观: 二、教学重点:能够运用概率的定义求简单随机事件发生的概率,并阐明理由。 三、教学难点:正确地理解随机事件发生
-
概率教案(5篇)
26.1.1随机事件与概率 课堂导入:抽球事件10个白球10个黄球,白球是惩罚,黄球是奖励,小强说快点抽,一会奖励都被抽没了,小张说什么时候抽概率都是一样的,小李说,抽完了不放回去,每次概