专题:高中数学等差数列例题
-
高中数学说课稿等差数列[最终定稿]
高中数学说课稿等差数列 各位老师,大家好!今天我说课的课题是等差数列。下面我将从几个方面进行阐述: 首先,我对本节教材进行简要分析。 一、教材分析 本节内容是等差数列(第一
-
高中数学等差数列说课稿
高中数学说课稿 数列
吉云
本节课讲述的是等差数列(第一课时)的内容。
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前 -
高中数学等差数列教案
等差数列
教学目的:
1.明确等差数列的定义,掌握等差数列的通项公式;
2.会解决知道an,a1,d,n中的三个,求另外一个的问题
教学重点:等差数列的概念,等差数列的通项公式
教学难点:等差数 -
等差数列典型例题及分析
一、【经典例题导讲】
[例1]等差数列an、bn的前n项和为SS
n、Tn.若nT7n1a
4n27(nN),求7
b;
n7
解:a7a7a7S137
bb13192
77b7T134132779
[例2]已知一个等差数列an的通项公式an=2 -
高中数学等差数列教案(二)
课题:3.3 等差数列的前n项和(二)
6161,又∵n∈N*∴满足不等式n<的正整数一共有30个. 22二、例题讲解例1 .求集合M={m|m=2n-1,n∈N*,且m<60}的元素个数及这些元素的和. 解:由2n-1<60, -
高中数学等差数列性质总结大全
等差数列的性质总结(一)等差数列的公式及性质1.等差数列的定义: anan1d(d为常数)(n2);2.等差数列通项公式:ana1(n1)ddna1d(nN*),首项:a1,公差:d,末项:an推广: anam(nm)d.从而d3.等差中项(1)
-
高中数学优秀说课稿 等差数列
高中数学优秀说课稿 等差数列 本节课讲述的是人教版高一数学(上)§3.2等差数列(第一课时)的内容。 一、教材分析 1、教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广
-
高中数学必修5高中数学必修5《等差数列复习》教案
等差数列复习知识归纳 1. 等差数列这单元学习了哪些内容? 定等差数列通义项前n项和主要性质 2. 等差数列的定义、用途及使用时需注意的问题: n≥2,an -an-1=d (常数) 3. 等差
-
高中数学 等差数列教案 苏教版必修5
等差数列(2) 一、创设情景,揭示课题 1.复习等差数列的定义、通项公式 (1)等差数列定义 (2)等差数列的通项公式:ana1(n1)d (anam(nm)d或andnp(p是常数)) (3)公差d的求法:① dan-an1 ②d2.
-
高中数学《等差数列》试讲答辩[共5篇]
高中数学《等差数列》试讲答辩 为帮助各位考生备战教师资格面试,中公教师网整理了各学科教师资格面试试讲答辩语音示范,以下是高中数学《等差数列》试讲答辩,希望对各位考生有
-
高中数学 等差数列教案 苏教版必修5
等差数列(4) 一、创设情景,揭示课题,研探新知 1.等差数列的定义:(1)等差数列的通项公式;(2)等差数列的求和公式。 2.等差数列的性质: 已知数列{an}是等差数列,则 (1)对任意m,nN,anam(nm)d,dan
-
高中数学等差数列教学运算主线的分析
高中数学等差数列教学运算主线的分析Laoli63
数列这一章主要包括一般的数列、等差数列、等比数列以及数列的应用四部分,重点是等差数列以及等比数列这两部分。数列这一部分主 -
高中数学《等差数列》教案2 苏教版必修5
第 4 课时:§2.2等差数列(2)【三维目标】:一、知识与技能1.进一步熟练掌握等差数列的通项公式及推导公式,掌握等差数列的特殊性质及应用;掌握证明等差数列的方法;2.明确等差中项的
-
高中数学必修5高中数学必修5《2.2等差数列(二)》教案
2.2等差数列(二) 一、教学目标 1、掌握"判断数列是否为等差数列"常用的方法; 2、进一步熟练掌握等差数列的通项公式、性质及应用. 3、进一步熟练掌握等差数列的通项公式、性质及应
-
高中数学 等差数列(32)教案 苏教版必修55篇
等差数列(3) 【三维目标】: 一、知识与技能 1. 掌握等差数列前n项和的公式以及推导该公式的数学思想方法,并能运用公式解决简单的问题; 2.探索活动中培养学生观察、分析的能力,培
-
高中数学不等式证明的常用方法经典例题
关于不等式证明的常用方法比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个
-
高中数学不等式典型例题解析(五篇模版)
高中数学不等式典型例题解析 高中数学辅导网http://www.xiexiebang.com/ 概念、方法、题型、易误点及应试技巧总结 不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可
-
2011高中数学排列组合典型例题精讲
高中数学排列组合典型例题精讲概念形成
1、元素:我们把问题中被取的对象叫做元素
2、排列:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺....序排成一列,叫做从