专题:几何证明题辅助线

  • 辅助线几何证明题

    时间:2019-05-15 07:59:56 作者:会员上传

    辅助线的几何证明题
    三角形辅助线做法
    图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。
    角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。

  • 初中几何证明题思路及做辅助线总结(五篇模版)

    时间:2019-05-14 16:02:07 作者:会员上传

    中考几何题证明思路总结 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形

  • 初中数学几何证明题作辅助线的技巧

    时间:2019-05-12 20:58:34 作者:会员上传

    人说几何很困难,难点就在辅助线。 初中数学几何证明题辅助线怎么画?辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 图中有角平分线,可向两边作垂线。 也可将图

  • 几何证明题大全

    时间:2019-05-15 07:58:47 作者:会员上传

    几何证明题1.在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答题要求:请写出详细的证明过程,越详细越好

  • 几何证明题

    时间:2019-05-15 14:10:31 作者:会员上传

    几何证明题集(七年级下册)姓名:_________班级:_______一、互补”。ED二、 证明下列各题:1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D 3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD 1

  • 几何证明题练习

    时间:2019-05-14 20:31:35 作者:会员上传

    几何证明题练习1.如图1,Rt△ABC中AB = AC,点D、E是线段AC上两动点,且AD = EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。 试判断△DEF的形状,并加以证明。说明:

  • 几何证明题专题讲解

    时间:2019-05-14 20:31:42 作者:会员上传

    几何证明题专题讲解【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平

  • 几何证明题方法

    时间:2019-05-15 07:59:58 作者:会员上传

    (初中、高中)几何证明题一些技巧初中几何证明技巧(分类)证明两线段相等1.两全等三角形中对应边相等。2.同一三角形中等角对等边。3.等腰三角形顶角的平分线或底边的高平分底边

  • 初一几何证明题

    时间:2019-05-15 07:58:47 作者:会员上传

    初一几何证明题一、1)D是三角形ABC的BC边上的点且CD=AB,角ADB=角BAD,AE是三角形ABD的中线,求证AC=2AE。(2)在直角三角形ABC中,角C=90度,BD是角B的平分线,交AC于D,CE垂直AB于E,交BD于

  • 高中几何证明题

    时间:2019-05-15 08:04:19 作者:会员上传

    高中几何证明题1、(本题14分)如图5所示,AF、DE分别世O、O1的直径,AD与两圆所在的平面均垂直,AD8.BC是O的直径,ABAC6,OE//AD. D(I)求二面角BADF的大小;(II)求直线BD与EF所成的角.

  • 初中几何证明题

    时间:2019-05-15 07:58:46 作者:会员上传

    如图,在三角形ABC中,BD,CE是高,FG分别为ED,BC的中点,O是外心,求证AO∥FG 问题补充:证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则

  • 如何做几何证明题

    时间:2019-05-13 10:14:27 作者:会员上传

    如何做几何证明题1、几何证明是平面几何中的一个重要问题,它对提高学生学生逻辑思维能力有着很大作用。几何证明有两种基本类型;一是平面图形的数量关系;二是有关平面图形的位置

  • 高中数学几何证明题

    时间:2019-05-12 17:22:16 作者:会员上传

    新课标立体几何常考证明题汇总1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD

  • 高中几何证明题

    时间:2019-05-12 17:22:19 作者:会员上传

    高中几何证明题如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=1/2AB=1.求证,D1E//平面ACB1求证,平面D1B1E垂直平面DCB1证明:1):连接AD1,AD1²=AD²+DD1²=

  • 初二几何证明题

    时间:2019-05-12 02:49:53 作者:会员上传

    1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF. (1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论
    A
    EB

  • 八年级几何证明题

    时间:2019-05-15 09:38:37 作者:会员上传

    八年级证明题一八年级几何证明题1、 已知:在⊿ABC中,AB=AC,延长AB到D,使AB=BD,E是AB的中点。求证:CD=2CE。C2、 已知:在⊿ABC中,作∠FBC=∠ECB=12∠A。求证:BE=CF。B3、 已知:在⊿ABC

  • 初一几何证明题

    时间:2019-05-15 07:15:52 作者:会员上传

    初一《几何》复习题2002--6—29姓名:一.填空题
    1.过一点
    2.过一点,有且只有直线与这条直线平行;
    3.两条直线相交的,它们的交点叫做;4.直线外一点与直线上各点连接的中,最短;A B 5.如果C[

  • 几何证明题(难)

    时间:2019-05-14 16:00:39 作者:会员上传

    附加题: 1、已知:如图,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ 2、