专题:立体几何思想方法总结
-
思想方法
思想方法练习一:知识储备1.控制变量法:①蒸发的快慢与哪些因素有关;②滑动摩擦力的大小与哪些因素有关;③液体压强的大小与哪些因素有关;④浮力的大小与哪些因素有关;⑤压力的作用
-
高中数学思想方法题型总结
2012年高考数学答题思想方法
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次是函数图象。
2.面对含有参数的初等函数来说,在研究的时候应该抓住 -
解立体几何方法总结
启迪教育解立体几何方法总结1坐标系的建立:2空间向量的运算:3求异面直线的夹角4法向量的求法5证明线面平行方法:6求线和面的夹角7求几何体的体积8证明面和面垂直和线面垂直9求
-
立体几何方法总结(5篇范文)
一、线线平行:
用:1、平几(如:同位角、内错角相等;常用分线段比值相等);2、证线
线平行(公理4);3、证线面平行;4、求异面直线所成角。证:1、利用公理4;2、三角形中比值相等得平行
二、线 -
工程地质思想方法
工程地质思想方法,解决工程应用,
工程地质学与工程实践完全联系在一起的。任何工程活动环境之间进行的,存在相互关联制约的关系,如垂直挖一个三峡船闸,对水文地质,地下渗流,渗透变 -
立体几何定理简要总结[共五篇]
1. 直线与平面平行、直线与平面垂直
直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行线面平行”)
直线和平 -
立体几何基本方法总结(精选五篇)
立体几何基本方法总结三个平行互相转化图注意:二、垂直问题三个垂直互相转化及平行垂直转化 注意:三、空间角四、空间距离
-
立体几何2018高考
2018年06月11日青冈一中的高中数学组卷 一.选择题(共11小题) 1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图
-
教案 立体几何
【教学过程】 *揭示课题 9 立体几何 *复习导入 一、点线面的位置关系 1 点与直线的位置关系:Aa Aa 2.点与面的位置关系: A A 3.直线与直线的位置关系:平行 相交 异面 4直线
-
高中立体几何
高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。立体几何是中学数学的一个难点,学生普遍反映“几何比代数难
-
立体几何复习题
立 体 几 何 复习题二、垂直关系一、平行关系(1) 线线平行(2)线面平行(3)面面平行证明线线平行的常用方法: 证明线面平行的常用方法: 证明面面平行的常用方法: 练习:1、已知有公共边
-
立体几何复习资料
立体几何判定方法汇总
一、判定两线平行的方法
1、平行于同一直线的两条直线互相平行
2、 垂直于同一平面的两条直线互相平行
3、 如果一条直线和一个平面平行,经过这条直线 -
立体几何证明题[范文]
11. 如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=1,D是棱2AA1的中点(I)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.2. 如图5所示,在四棱锥PAB
-
立体几何测试题[本站推荐]
1、设l,m是两条不同的直线,是一个平面,则下列命题正确的是(B)
(A)若lm,m,则l(B)若l,l//m,则m
(C)若l//,m,则l//m(D)若l//,m//,则l//m
2、在空间,下列命题正确的是(D)
A.平行直线的平行投影重合B.平 -
立体几何复习(★)
一、线线平行的证明方法
1、利用平行四边形。2、利用三角形或梯形的中位线。
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 -
立体几何证明
立体几何证明高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(
-
立体几何证明
1、(14分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.A2.如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱交B1C于点F,BB
-
立体几何解题技巧
立体几何解题技巧
李明健 发布时间: 2010-8-4 16:07:19
立体几何解答题的设计,注意了求解方法既可用向量方法处理,又可以用传统的几何方法解决,并且一般来说,向量方法比用传统方