专题:平面向量基本定理学案
-
平面向量基本定理教案
§2.3.1平面向量基本定理教学设计 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方
-
《平面向量基本定理》教案
一、教学目标:1.知识与技能:了解平面向量基本定理及其意义, 理解平面里的任何一个向量都可以用两个不共线的向量来表示;能够在具体问题中适当地选取基底,使其他向量都能够用基
-
2.3.1平面向量基本定理教案
2.3.1平面向量的基本定理 教学目的: 要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量. 教学重点:平面向量的基本定理及其应用. 教学
-
平面向量基本定理(教学设计)
平面向量基本定理 教学设计平面向量基本定理教学设计 一、教材分析 本节课是在学习了共线向量基本定理的前提下,进一步研究平面内任一向量的表示,为今后平面向量的坐标运算打
-
平面向量基本定理及相关练习(含答案)
平面向量2 预习: 1.两个非零向量夹角的概念:已知非零向量a和b,作OAa,OBb,则AOB(0)叫做向量a和b的夹角。 (1)0时,a和b同向; (2)时,a和b反向; (3)时,ab; 2(4)注意两向量的夹角定义,两向量必须是同
-
3.1.2空间向量基本定理学案范文
3.1.2空间向量的基本定理
一.自学达标: 1.共线向量定理:
2.共面向量定理:
3.空间向量分解定理:
,b,
4.ac可作空间的基底的充要条件是:
5.已知平行六面ABCD-Aa,ADb,AA
1B1C1D1,AB1c,
试用 -
平面向量基本定理(教学设计)5篇
平面向量基本定理 教学设计 教材分析: 分析基本定理在教材中的作用,让学生有目标性地学习. 教学目标: 1.通过作图法理解并掌握平面向量基本定理的内容及含义. 2.深刻理解向量的基底
-
《平面向量基本定理》教学设计(共五篇)
《平面向量基本定理》教学设计 一、内容和内容解析 内容:平面向量基本定理。 内容解析:向量不仅是沟通代数与几何的桥梁,还是解决许多实际问题的重要工具。从问题中抽象出向量
-
平面向量基本定理与线性规划教学设计和反思专题
【教材分析】向量坐标化使平面向的学习代数化,难度降低了很多。但学生对平面向量基本定理的应用还是不太熟练,特别是由变量求范围问题,更是一头雾水。所以专门安排了这一节课来
-
《平面向量的分解定理》教案
8.3平面向量的分解定理 翁旭宇 一、教学目标 1.理解和掌握平面向量的分解定理; 2.掌握平面内任一向量都可以用两个不平行向量来表示;掌握基的概念,并能够用基表示平面内的向量; 3.
-
83平面向量的分解定理教学设计说明
8.3平面向量的分解定理教学设计说明 立达中学 翁旭宇 一、教学内容分析 本节课内容是对前面向量知识的综合运用,在本章知识结构中起着承上启下的作用,是平面向量线性运算向坐
-
平面向量复习题
平面 向 量向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具
-
高中数学新课程创新教学设计案例50篇 38平面向量的基本定理
38平面向量的基本定理 教材分析平面向量的基本定理是说明同一平面内任一向量都可以表示为两个不共线向量的线性组合,它是平面向量坐标表示的基础,也是平面图形中任一向量都
-
专题二向量的坐标表示和空间向量基本定理
第7课时专题二向量的坐标表示和空间向量基本定理 任务1点共面问题例1. 已知A、B、C三点不共线,对平面外一点O,在下列条件下,点P是否一定与A、B、C共面?(1);(2)例2. 若点M在平面ABC内,
-
向量证明正弦定理
向量证明正弦定理表述:设三面角∠p-ABC的三个面角∠BpC,∠CpA,∠ApB所对的二面角依次为∠pA,∠pB,∠pC,则Sin∠pA/Sin∠BpC=Sin∠pB/Sin∠CpA=Sin∠pC/Sin∠ApB。目录1证明2全向量
-
吉林省长春市清蒲中学高一下学期数学A版(2019)必修第二册第六章6.3.1平面向量基本定理学案
数学学科学案设计教师:田雪审阅人:崔淑莲使用班级:高一年级学生姓名:_______编号:2020-2021学年度(下)学期6号使用时间:课题平面向量基本定理课型新授课课标考纲要求(核心素养):数学抽
-
高中数学必修4教案平面向量基本定理、平面向量的正交分解和坐标表示及运算
平面向量基本定理、平面向量的正交分解和坐标表示及运算 教学目的: (1)了解平面向量基本定理;理解平面向量的坐标的概念; (2)理解平面里的任何一个向量都可以用两个不共线的向量来
-
平面向量说课稿(精选5篇)
平面向量说课稿 我说课的内容是《平面向量的实际背景及基本概念》的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书数学必修四,教学内容为第74页至76页.