专题:四边形证明题及答案
-
四边形证明题
四边形证明题已知E.F分别为平行四边形ABCD一组对边ADBC的中点,BE与AF交于点G,CE与DF交于点H求证四边形EGFH是平行四边形解:在三角形ABF和三角形EDC中因为:AB=CD角DAB=角DCBAE=F
-
四边形证明题范文合集
1.如图,BD是□ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:△ABE≌△CDF.EABFC2.如图已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1) 求证:四边形AECF
-
四边形的证明题
四边形的证明题1.如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF. FADBEC(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)(2)若矩形AB
-
四边形证明题(完)
1、如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE. 求证:△ACD≌△CBF.点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.2、如图,AC
-
四边形几何拓展证明题
39.如图19-12,已知四边形ABCD是等腰梯形, CD//BA,四边形AEBC是平行四边形.请说明:∠ABD=∠ABE.C ACB MF图19-12 CB 图19-14 图19-1541.如图19-14,AD是△ABC的角平分线,DE∥AC交AB于点E
-
四边形证明题复习(精选五篇)
1.已知:如图,在□ABCD中,E,F分别是边AD,BC上的点,且AECF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O. (1)求证:△ABE≌△CDF; (2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说
-
特殊四边形的证明题
题型一:矩形1.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。2.
-
特殊四边形证明题(正方形)
特殊四边形证明题(正方形)1.如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.求证:DE-BF = EF.2.如图 ,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F. A D(1)求
-
特殊四边形证明题习题
特殊四边形证明题1.(2009年湖北十堰市)如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.求证:DE-BF = EF.2.(2009年山东青岛市)已知:如图,在ABCD中,AE是BC边上的高
-
2012中考数学四边形经典证明题含答案
1.如图,正方形ABCD和正方形A′OB′C′是全等图形,则当正方形A•′OB′C′绕正方形ABCD的中心O顺时针旋转的过程中.(1)四边形OECF的面积如何变化.(2)若正方形ABCD的面积是4,求四边形OEC
-
2013中考数学四边形经典证明题学生版
2013年中数学四边形经典证明题1.如图,正方形ABCD和正方形A′OB′C′是全等图形,则当正方形A•′OB′C′绕正方形ABCD的中心O顺时针旋转的过程中.(1)四边形OECF的面积如何变化.(2)若正
-
数学 中考A卷 四边形证明题(典型)5篇
中考A卷四边形证明题(1)1.如图,在四边形ABCD中,点E是线段AD上的任意一点(E 与A,D不重合),G,F,H分别是BE,BC,CE的中点.12BC, E H (1)证明四边形EGFH是平行四边形;(2)在(1)的条件下,若EFBC,且EF证明平
-
科学证明题附答案
证明题1.液体内部存在压强。如图所示,烧杯内盛有密度为的液体,我们可以设想液面下h深处有一面积为s的水平圆面,它所受到的压力是其上方圆柱形的小液柱所产生的。(1)请在图中作出小
-
初一几何证明题答案
初一几何证明题答案图片发不上来,看参考资料里的1如图,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求证:AC=EF。2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD(1)求证:△BCE全等△DCF
-
《四边形》专题训练——证明题(平行四边形,矩形,菱形,正方形)(精选多篇)
《四边形》专题训练(一)————证明题,求解题专题训练1.中,∠C=60°,DE⊥AB于E,DF⊥BC于F;(1)求∠EDF的度数;(2)若AE=4,CF=7,求的周长。2.如图,已知的周长是32㎝,BC(1)求∠C的度数;(2)求BE、DF的
-
如何做几何证明题(无答案)
如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面
-
中考数学证明题附答案(免费)
中考中的“ 旋转、平移和翻折”平移、旋转和翻折是几何变换中的三种基本变换.所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分
-
应用回归分析证明题及答案
应用回归分析证明题及答案nn一. 证明残差满足的约束条件:ei0,xiei0。i1i1证明:由偏导方程即得该结论:Q2nˆ0ˆ0(yi1i0ˆ1xi)0Q2n(yˆˆx)x11ˆ1i1i01ii0证毕.二. 证明平方和分解