专题:数列放缩法经典例题
-
放缩法证明数列不等式经典例题
放缩法证明数列不等式主要放缩技能: 1.11111112 nn1n(n1)nn(n1)n1n1144112()22n4n1(2n1)(2n1)2n12n1n242. 2) 4.2n2n2n1115. n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.n22(n1
-
放缩法典型例题
放缩法典型例题数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列
-
高三数学数列放缩法
数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式
-
放缩法证明数列不等式
放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用
-
放缩法证明数列不等式
放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n
-
放缩法(不等式、数列综合应用)
“放缩法”证明不等式的基本策略近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能
-
2012高考专题----数列与不等式放缩法
高考专题——放缩法一、基本方法1.“添舍”放缩通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<例2. 已知a、b
-
数列经典例题
11.设等差数列{an}的前n项和为Sn,若a37,a4a66,则当Sn取最小值时,n等于_________.20.(本小题满分14分)22已知数列{an}是首项为1的正项数列,且(n1)an1nanan1an0.(1)求数列{an}的通项
-
放缩法与数列不等式的证明
2017高三复习灵中黄老师的专题 放缩法证明数列不等式编号:001 引子:放缩法证明数列不等式历来是高中数学的难点,在高考数列试题中经常扮演压轴的角色。由于放缩法灵活多变,技巧
-
高三数学专题复习——数列不等式(放缩法)
高三数学专题复习——数列不等式(放缩法)教学目标:学会利用放缩法证明数列相关的不等式问题 教学重点:数列的构造及求和 教学难点:放缩法的应用证明数列型不等式,因其思维跨度大、
-
用放缩法证明与数列和有关的不等式
用放缩法证明与数列和有关的不等式湖北省天门中学薛德斌数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等
-
数列极限例题
三、数列的极限 (1)n1}当n时的变化趋势. 观察数列{1n问题: 当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察: (1)n1当n无限增大
-
数列经典例题4
例1错误!未指定书签。.设{an}是公比为q的等比数列.
(Ⅰ)推 导{an}的前n项和公式;(Ⅱ) 设q≠1, 证明数列{an1}不是等比数列.例2 已知数列an的首项为a11,其前n项和为sn,且对任意正 -
放缩法讨论
不等式的证明——放缩法
学习目标:
1、感受在什么情况下,需要用放缩法证明不等式。
2、探索用放缩法证明不等式的理论依据和技巧。
放缩法:证明不等式时,通过把不等式中的某些部 -
数学放缩法
放缩法的常见技巧 (1)舍掉(或加进)一些项 (2)在分式中放大或缩小分子或分母。 (3)应用基本不等式放缩(例如均值不等式)。 (4)应用函数的单调性进行放缩 (5)根据题目条件进行放缩。 (6)构造
-
论文-放缩法证明数列不等式的基本策略
放缩法证明数列不等式的基本策略广外外校姜海涛放缩法证明数列不等式是高考数学命题的热点和难点。所谓放缩法就是利用不等式的传递性,对不等式的局部进行合理的放大和缩小从
-
利用放缩法证明数列不等式的技巧“揭秘”
龙源期刊网 http://.cn
利用放缩法证明数列不等式的技巧“揭秘” 作者:顾冬生
来源:《新高考·高三数学》2013年第06期
数列型不等式的证明题,常常需要用放缩的方法来解决,但放 -
放缩法证明“数列+不等式”问题的两条途径
放缩法证明“数列+不等式”问题的两条途径数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。用放缩法解决“数列+不等式”问题