专题:数列与函数的极限
-
数列极限和函数极限(最终版)
数列极限和函数极限极限概念是数学分析中最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌
-
10专题十数列极限与函数极限
2012年高考复习资料—第二轮复习专题练习题华中师大一附中孟昭奎专题十数列极限与函数极限一、选择题(1x)mab,则a·b=1.(2008年高考·湖北卷)已知m∈N, a、b∈R,若lim n0xA.-mB.mC.-
-
D1.2-1.3数列的极限函数的极限
高等数学标准化作业题参考答案—2班级姓名学号第二节数列的极限一、单项选择题1.数列极限limynA的几何意义是nA.在点A的某一邻域内部含有{yn}中的无穷多个点B. 在点A的某
-
函数与数列极限的定义区别
导读:极限是研究函数最基本的方法,它描述的是当自变量变化时函数的变化趋势.要由数列极限的定义自然地过渡到函数极限的定义,关键在于搞清楚 数列也是函数这一点.数列可看作一
-
函数极限
习题
1.按定义证明下列极限:
limx6x5=6 ; lim(x2-6x+10)=2; x2x
x251 ; lim lim2xx1x2
limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf (x) ≠ A. xx0 -
函数极限
《数学分析》教案第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些
-
函数极限
数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际
-
第一章函数与极限(本站推荐)
第一章函数与极限
第一节 映射与函数
一、集合
1、集合的概念
集合是数学中的一个基本概念,我们先通过例子来说明这个概念。例如,一个书柜的书构成一个集,一间教室里的学生构成 -
函数极限与连续(汇编)
函数、极限与连续一、基本题1、函数fxln6x的连续区间ax2x2x12、设函数fx,若limfx0,且limfx存在,则 x1x1x12axba-1,b41sin2x3、limx2sin-2x0xx4、n2x4/(√2-3)k5、lim1e2,则k=-1xx
-
第一章函数与极限
《函数与极限》重难点电信1003班 函数1. 定义域与定义区间的关系。2. 映射的种类及存在条件。3. 求函数定义域的基本原则(7条)。4. 几种特殊的函数类型(绝对值函数、符号函数
-
数列极限例题
三、数列的极限 (1)n1}当n时的变化趋势. 观察数列{1n问题: 当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察: (1)n1当n无限增大
-
数列极限教案
数列的极限教案授课人:###一、教材分析极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。二、教学重点和难点教学重点:数列极限概念
-
数列极限复习
数列极限复习题姓名242n1、lim=; n139(3)nan22n1a2、若lim(2n)1,则=; nbn2b1an3、如果lim0,则实数a的取值范围是;n2an4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范
-
函数与极限测试题答案(定稿)
函数与极限测试题答案(卷面共有26题,100分,各大题标有题量和总分)一、选择(9小题,共26分)1.D2.B3.B4.C5.A6.D7.B8.A9.B二、填空(6小题,共13分)1.1 e2.yln(x2)) 3.(3,4.x1及x15.aln36.5 3三、计算(10小题
-
函数极限与连续教案
第四讲Ⅰ 授课题目(章节)1.8:函数的连续性Ⅱ 教学目的与要求:1、正确理解函数在一点连续及在某一区间内连续的定义;2、会判断函数的间断点.4、了解初等函数在定义区间内是连续的
-
函数与极限测试题答疑
第一章函数与极限测试题答疑一、选择题(7×4分)x,1. 设f(x)2x,x0,g(x)5x4,则f[g(0)]-------------------( D) x0A 16B 4C 4D 16 注:中学基本问题,应拿分!2. 函数yf(x)的增量yf(xx)f(x)
-
函数极限证明
函数极限证明记g(x)=lim^(1/n),n趋于正无穷;下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。不妨设f1(x)趋于a;作b>a>=0,M>1;那么存在N1,当x>N1,有a/MN2
-
1-2函数极限
高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限