专题:线面面面平行证明题
-
线面,面面平行证明题
线面,面面平行证明一.线面平行的判定1. 定义:直线和平面没有公共点,则直线和平面平行.2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.3.符号表示为
-
面面平行证明题
1 如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EABF∶FD,求证:EF//平面PBC.2 如图,空间四边形,平行于与的截面分别交、AC、CD、BD于E、F、G、H.求证:四
-
线面平行证明题
线面平行证明题1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是.A. 异面B. 相交C.平行D. 不能确定2.若直线a、b均平行于平面α,则a与b的关系
-
线面、面面平行习题
线面、面面平行习题课三、例题精讲题型1、线面平行判定定理,线面平行性质定理线线平行 线面平行例1、(线线平行 →线面平行→线线平行)解:已知直线a∥平面,直线a∥平面,平面平面=b
-
必修2-2.2线面平行面面平行的经典7道证明题
必修2 —2.2线面平行、面面平行的证明经典练习1.直三棱柱ABCA1B1C1中,D是AB的中点,证明:BC1//平面ACD2.如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD
-
线面平行面面平行性质学案
必修22.2.3—2.2.4直线与平面平行及平面与平面平行的性质多听、多思、多做,成功就在那里等你。2.2.3-2.2.4直线与平面平行及平面与平面平行的性质【学习目标】1、探究直线与
-
第60课时__线面平行、面面平行
2008届高三理科数学第一轮复习讲义第60课时课题:线面平行、面面平行教学目标:掌握线面平行、面面平行的判定方法,并能熟练解决线面平行、面面平行的判定问题.(一) 主要知识及主要
-
2.2.3+2.2.4线面和面面平行的性质
山东省新泰市第二中学高一数学组主编人:李健 吴师磊2.2.3 直线与平面平行的性质2.2.4平面与平面平行的性质学习目标:1、 掌握直线与平面平行的性质定理;会用性质定理进行简单
-
关于线线、线面及面面平行的问题
关于线线、线面及面面平行的问题典型例题:例1. (2012年四川省文5分)下列命题正确的是A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另
-
线面平行、面面平行的判定作业
[平行]“直线∥平面”的主要条件是“直线∥直线”, 而“直线∥直线”一般是利用三角形的中位线平行于底边或平行四边形的对边平行来证明。"平面∥平面"的主要条件是“直线∥
-
线面、面面平行关系的判定[范文]
课题:空间中直线与平面、平面与平面平行关系的判定【课标展示】1. 掌握直线与平面平行、平面与平面平行的证明方法。2. 能规范、完整的书写证明过程。- 1 -3.经典呈现(一)证明
-
线面平行与垂直的证明题
勤志数学线面平行与垂直的证明1:如图,在棱长为1的正方体ABCD-A1B1C1D1中. (1)求证:AC⊥平面B1BDD1;(2)求三棱锥B-ACB1体积.2:如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点.A
-
线面平行、面面平行的性质导学案
2.1.3、2.1.4直线与平面平行的性质、平面与平面平行的性质20120518 学习目标:1、理解直线与平面平行、平面与平面平行的性质定理。2、能用文字语言、符号语言、图形语言准确
-
线面 线线面面平行垂直方法总结
所有权归张志涛所有 线线平行 1.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。(一条直线与一个平面平行,则过这条直线的任一平面与
-
线面平行的证明题(共6题)
线面平行的习题 班级姓名1.如图,在四棱锥P-ABCD中,M、N分别是AB、PC的中点,若ABCD是平行四边形,求证:MN//平面PAD.PCAM 2、如图,在底面为平行四边形的四棱锥 P—ABCD 中,点 E 是 PD 的
-
平行证明题
线面,面面平行证明题1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E、F分别是棱AD、PB的中点,求证:直线EF∥平面PCDPDFCEAB2. 如下图,在正方体ABCD—A1B1C1D1中,E、F、G分别是AA1
-
线面垂直面面垂直专题练习
线面垂直专题练习1.设M表示平面,a、b表示直线,给出下列四个命题:aMa//baMa//M①②③b∥M④M. bMa//bb⊥abaMbMab其中正确的命题是A.①②B.①②③C.②③④D.①②④2.如图所示,
-
面面平行练习题
高一数学第3周周末作业一、选择题1.下列条件中,能判断两个平面平行的是 A.一个平面内的一条直线平行于另一个平面; B.一个平面内的两条直线平行于另一个平面 C.一个平面内有无