2017学年八年级数学上册13.3等腰三角形第2课时教案(精选5篇)

时间:2019-05-12 17:23:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2017学年八年级数学上册13.3等腰三角形第2课时教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2017学年八年级数学上册13.3等腰三角形第2课时教案》。

第一篇:2017学年八年级数学上册13.3等腰三角形第2课时教案

13.3 等腰三角形(第2课时)

教学内容

等腰三角形的性质.

教学过程

一、导入新课

思考:我们知道,如果一个三角形中有两条边相等,那么它们所对的角相等.反过来,如果一个三角形有两个角相等,那么它们所对的边有什么关系?

二、探究新知

1.等腰三角形的判定定理

让学生思考如何证明刚才的猜想,并初步作答,教师及时点评,并规范作答步骤. 证明:在△ABC中,∠B=∠C(如图). 作∠BAC的平分线AD. 在△BAD和△CAD中,∠1=∠2,∠B=∠C,AD=AD,∴△BAD≌△CAD(AAS). ∴AB=AC.

由此,我们可以得到等腰三角形的判定方法:

如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 2.判定定理的应用

例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形. 已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图). 求证:AB=AC.

分析:要证明AB=AC,可先证明∠B=∠C.因为∠1=∠2,所找出∠B,∠C与∠1,∠2的关系.

证明:∵AD∥BC,∴ ∠1=∠B(两直线平行,同位角相等),以可以设法

∠2=∠C(两直线平行,内错角相等). 而已知∠1=∠2,所以 ∠B=∠C.

∴ AB=AC(等角对等边). 3.作等腰三角形

例3 已知等腰三角形底边边长为a,底边上的高的长为h,求作这个等腰三角形.

作法:(1)作线段AB=a.

(2)作线段AB的垂直平分线MN,与AB相交于D.(3)在MN上取一点C,使DC=h.

(4)连接AC,BC,则△ABC就是所求作的等腰三角形.

三、课堂小结

1.探索等腰三角形判定定理.

2.理解等腰三角形的判定定理,并会运用其进行简单的证明. 3.了解等腰三角形的尺规作图.

四、课后作业

习题13.3第2题. 教学反思:

第二篇:浙教版八年级上册数学《2.3 等腰三角形的性质定理第2课时 等腰三角形的性质定理2》教案

第2章

特殊三角形

2.3

等腰三角形的性质定理

第2课时

等腰三角形的性质定理2

1、经历利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识.2、掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一.

3、会利用等腰三角形的性质进行简单的推理、判断、计算和作图.理解并掌握等腰三角形的性质:等边对等角;三线合一.等腰三角形三线合一性质的运用.1.温故检测:叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是。

2.悬念、引子、思考:

将一把三角尺和一个重锤如图放置,就能检查一根横梁是否水平,你知道为什么吗?

1.等腰三角形的性质

合作学习:分三组教学活动材料

教学活动材料1:

如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D,(1)把这个等腰三角形剪下来,然后沿着顶角平分

线对折,仔细观察重合的部分,并写出所发现的结论。

(2)你发现了等腰三角形的哪些性质?

教学活动材料2:如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D,(1)根据我们已经获得的等腰三角形是轴对称图形,图2-5中等腰三角形ABC的对称轴是什么?△ABD各个顶点的对称点分别是什么?由此可见,将△ABD作关于直线AD的轴对称变换,所得的像是什么?

(2)根据轴对称变换的性质:轴对称变换不改变图形的形状和大小.找出图中的全等三角形,以及所有相等的线段和相等的角.(3)你有什么发现?能得出等腰三角形的哪些性质?

教学活动材料3:如图2-5,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D,(1)根据学过的全等三角形判定方法找出图中的全等三角形,根据全等三角形的性质找出所有相等的线段和角

(2)你发现了等腰三角形的哪些性质?

(发给学生活动材料,四人一组先合作学习,再交流讨论,经历等腰三角形性质的发现过程,教师应给学生一定的时间和机会,来清晰地、充分地讲出自己的发现,并加以引导,用规范的数学语言进行归纳,最后得出等腰三角形的性质.)

结论:①

等腰三角形的两个底角相等。或“在一个三角形中,等边对等角”

等腰三角形的顶角平分线、底边上的中线和高线互相重合.简称等腰三角形三线合一.2.多媒体演示:教师借助媒体的动态效果,介绍在一个三角形中,等边对等角和三角形一边上中线、高线及角平分线的相对位置,帮助学生在理解的基础上,掌握等腰三角形的性质.3.解决节前图中的悬念,如果重锤经过三角尺斜边的中点,那么可以判定梁是水平的.你能说明理由吗?

4.应用定理时的推理格式:

用几何语言表述为:

在△ABC中,如图,∵AB=AC

∴∠B=∠C(在一个三角形中等边对等角)

在△ABC中,如图

(1)∵AB=AC

,∠1=∠2

∴AD⊥BC,BD=DC

(等腰三角形三线合一)

(2)∵AB=AC,BD=DC

∴AD⊥BC,∠1=∠2

(3)∵AB=AC,AD⊥BC

∴BD=DC,∠1=∠2

例1

如图2-6,在△ABC中,AB=AC,∠A=50°,求∠B,∠C的度数.(板书解答过程)

例2

(P36课内练习2)

已知线段a,h(如图2-7)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h.教学中可作如下启发:

(1)假设图形已经作出,如课本图2-8,BC长已知,可以先作出BC边,要作等腰三角形ABC,关键是要作出哪一个点?

(2)已知BC边上的高线的长度为h,你能作出BC边上的高线吗?等腰三角形底边上的高线与中线有什么关系?由此能确定顶点A的位置吗?

(例2是运用尺规作等腰三角形,作法思路需要作一些分析转换,是本节教学的难点,在操作过程中要让学生体验等腰三角形三线合一的性质)

等腰三角形三线合一.

第三篇:2017学年八年级数学上册15.3分式方程第2课时教案

15.3 分式方程(第2课时)

教学内容

分式方程.

教学过程

一、导入新课

3解方程 x1.

x1x1x2

二、探究新知

1.解分式方程

学生独立思考,写出此方程的解答过程,师及时点评. 提示:整数别忘同乘最简公分母. 练习:解方程答案:无解

2.解含字母的分式方程 解方程x1421. x1x1ab1(b1). xa学生独立思考,写出此方程的解答过程,师及时点评. 解:方程两边同乘 x-a,得

a+b(x-a)=(x-a).

去括号,得 a+bx-ab=x-a. 移项、合并同类项,得(b-1)x=ab-2a. ∵b≠1, ∴b-1≠0.

ab2a. b1ab2a时,x-a≠0,所以x=ab2a是原分式方程的解. 当x=b1b1∴x=3.分式方程的应用

例3 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?

让学生由题意填写下题:甲队1个月完成总工程的_____,设乙队单独施工1个月能完成总工程的 ,那么甲队半个月完成总工程的____,乙队半个月完成总工程的____,两队半个月完成总工程的 .

让学生找出问题中的哪个等量关系,列出方程.学生独立思考,写出此方程的解答过程,师及时点评.

三、课堂小结

1.会解较复杂的分式方程和较简单的含有字母系数的分式方程. 2.能够列分式方程解决简单的实际问题.

四、课后作业

习题15.3第2、3题.

教学反思:

第四篇:八年级数学等腰三角形教案

中考网 www.xiexiebang.com

等腰三角形

(一)教学目标:

1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 教学重点

1.等腰三角形的概念及性质.

2.等腰三角形性质的应用. 教学难点

等腰三角形三线合一的性质的理解及其应用. 教具准备:圆规、三角尺、教学过程

一.提出问题,创设情境

1.①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

2.满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形. 二.导入新课

1.同学们通过自己的思考来做一个等腰三角形.

AABI

BIC

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

思考:

(1).等腰三角形是轴对称图形吗?请找出它的对称轴.

(2).等腰三角形的两底角有什么关系?

(3).顶角的平分线所在的直线是等腰三角形的对称轴吗?

(4).底边上中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?

2.等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

(它的两个底角有什么关系?)

3.等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.(这个结论由学生共同探究得出的)等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰△的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).

4.[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.

AB三.随堂练习

课本P51练习1、2、3. 四.课时小结

DC

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. 五.课后作业

课本P56习题12.3 1、3、4、题.

等腰三角形

(二)教学目标

探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念. 教学重点:

等腰三角形的判定定理及其应用.探索等腰三角形的判定定理. 教学难点:

等腰三角形的判定定理及其应用. 教学过程

一.提出问题,创设情境

1.等腰三角形有些什么性质呢?

2.满足了什么样的条件就能说一个三角形是等腰三角形呢?

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com 二.导入新课

1.思考:如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,•能不能大约同时赶到出事地点(不考虑风浪因素)?

0AB

2.在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?

[例1]已知:在△ABC中,∠B=∠C(如图). 求证:AB=AC.

证明:作∠BAC的平分线AD.

在△BAD和△CAD中

12,

BC,ADAD,A12BDCAB=AC.

∴△BAD≌△CAD(AAS). ∴3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角 所对的边也相等(简写成“等角对等边”).

4.[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么 这个三角形是等腰三角形.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图). 求证:AB=AC.

证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).

又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对练习:已知:如图,AD∥BC,BD平分∠ABC. 求证:

证明:∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等).

又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD(等角对等边).

BCADBCA12ED等边). AB=AD.

[例3]如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C•向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,•绳子CD和CE要多长?

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

ACMCDDB(1)EBN(2)E

分析:这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题. 三.随堂练习

课本P51 1、2、3. 四.课时小结

本节课我们主要探究了等腰三角形判定定理,•在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中发现和养成一定的逻辑推理能力. 五.课后作业

课本P56-57 2、4、5、9题.

等腰三角形(练习课)

教学目的:

1.使学生进一步熟练理解和掌握等腰三角形的概念及性质、判定定理及的应用. 2.能灵活地运用等腰三角形的知识解决问题.教学重点:

能灵活地运用等腰三角形的知识解决问题。教学难点:

能灵活地运用等腰三角形的知识解决问题。教具准备:三角板、小黑板 教学过程:

一、复习知识要点

1.有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.

不等边三角形

2.三角形按边分类:三角形底边和腰不相等的等腰三角形 等腰三角形等边三角形(正三角形)

3.等腰三角形是轴对称图形,其性质是:

性质1:等腰三角形的两个底角相等(简写成“等边对等角”)

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.

4.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

二、例题

例:如图,五边形ABCDE中AB=AE,BC=DE,∠ABC=∠AED,点F是CD的中点.•求证:AF⊥CD.分析:要证明AF⊥CD,而点F是CD的中点,联想到这是等腰三角形特有的性质,•于是连接AC、AD,证明AC=AD,利用等腰三角形“三线合一”的性质得到结论.

证明:连接AC、AD 在△ABC和△AED中

ABAE(已知)ABCAED(已知)BCED(已知)∴△ABC≌△AED(SAD)

∴AC=AD(全等三角形的对应边相等)

又∵△ACD中AF是CD边的中线(已知)

ABECFD

∴AF⊥CD(等腰三角形底边上的高和底边上的中线互相重合)

三、练习

(一)、选择题

1.等腰三角形的对称轴是()

A.顶角的平分线

B.底边上的高

C.底边上的中线

D.底边上的高所在的直线

2.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()

A.17cm

B.22cm

C.17cm或22cm

D.18cm 3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()

A.40°

B.50°

C.60°

D.30° 4.等腰三角形的一个外角是80°,则其底角是()

A.100°

B.100°或40°

C.40°

D.80°

5.如图1,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是()

A.80°

B.90°

C.100°

D.108°

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com GECABDFHEAF

如图1

答案:

BDC1.D 2.B 3.A 4.C 5.B

如图2

(二)、填空题

6.等腰△ABC的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.

8.等腰三角形的顶角是n°,则两个底角的角平分线所夹的钝角是_________.

9.如图2,△ABC中AB=AC,EB=BD=DC=CF,∠A=40°,则∠EDF•的度数是_____. 10.△ABC中,AB=AC.点D在BC边上

(1)∵AD平分∠BAC,∴_______=________;________⊥_________;

(2)∵AD是中线,∴∠________=∠________;________⊥________;

(3)∵AD⊥BC,∴∠________=∠_______;_______=_______. 11.△ABC中,∠A=65°,∠B=50°,则AB:BC=_________.

12.已知AD是△ABC的外角∠EAC的平分线,要使AD•∥BC,•则△ABC•的边一定满足________. 13.△ABC中,∠C=∠B,D、E分别是AB、AC上的点,•AE=•2cm,•且DE•∥BC,•则AD=________. 答案:

6.60

7.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 8.(90+ 1n)°

9.70°

10.略

11.1

12.AB=AC

13.2cm

14.30海里 21AB,你知道∠ACB的度数是多少吗?由

2(三)、解答题

15.如图,CD是△ABC的中线,且CD= 此你能得到一个什么结论?请叙述出来与你的同伴交流.

ADCB

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com 16.如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠ABC=∠ADC.ABDC17.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,• 求证:△DBE是等腰三角形.

DBEA答案:

FC

15.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形

16.连接BD,∵AB=AD,∴∠ABD=∠ADB.∵CB=CD,∴∠CBD=∠CDB. ∴∠ABC=∠ADC 17.证明∠D=∠BED

等边三角形

(一)教学目标

经历探索等腰三角形成为等边三角形的条件及其推理证明过程. 教学重点:

等边三角形判定定理的发现与证明. 教学难点:

引导学生全面、周到地思考问题. 教具准备:圆规、三角尺、教学过程

一.提出问题,创设情境

1.把等腰三角形的性质用到等边三角形,能得到什么结论?

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

2.一个三角形满足什么条件就是等边三角形?

3.你认为有一个角等于60°的等腰三角形是等边三角形吗?•你能证明你的结论吗?把你的证明思路与同伴交流.

二.导入新课

1.探索等腰三角形成等边三角形的条件.

如果等腰三角形的顶角是60°,那么这个三角形是等边三角形.你能给大家陈述一下理由吗?

有一个角是60°的等腰三角形是等边三角形.

2.你在与同伴的交流过程中,发现了什么或受到了何种启示?

今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?

[生]三个角都相等的三角形是等边三角形.

[师]下面就请同学们来证明这个结论.

已知:如图,在△ABC中,∠A=∠B=∠C.

求证:△ABC是等边三角形.

证明:∵∠A=∠B,∴BC=AC(等角对等边).

又∵∠A=∠C,∴BC=AC(等角对等边).

∴AB=BC=AC,即△ABC是等边三角形.

等腰三角形的性质和判定方法就可以得到:

等边三角形的三个内角都相等,并且每一个角都等于60°;

三个角都相等的三角形是等边三角形.

有一个角是60°的等腰三角形是等边三角形.

3.讲解P51例4 三.随堂练习

课本P54 练习1、2.

四.课时小结

这节课,我们自主探索、思考了等腰三角形成为等边三角形的条件,•并对这个结论的证明有意识地渗透分类讨论的思想方法.这节课我们学的定理非常重要,在我们今后的学习中起着非常重要的作用.

五.课后作业

课本课本P56-57 5、6、7、10题.

中考网 www.xiexiebang.com

ABC

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com 等边三角形

(二)教学目标

1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.

2.有一个角为30°的直角三角形的性质的简单应用. 教学重点:含30°角的直角三角形性质定理发现与证明.

教学难点:含30°角的直角三角形性质定理发现与证明.引导学生全面、周到地思考问题. 教具准备:圆规、三角尺、教学过程

一.提出问题,创设情境

1.用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?•能拼出一个等边三角形吗?说说你的理由.

2.由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗? 二.导入新课

1.用含30°角的直角三角尺摆出了如下两个三角形.

AABD(1)CB

D(2)C

其中,图(1)是等边三角形,因为△ABD≌△ACD,所以AB=AC,又因为Rt△ABD中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.

图(1)中,已经知道它是等边三角形,所以AB=BC=AC.•而∠ADB=90°,即AD⊥BC.根据等腰三角形“三线合一”的性质,可得BD=DC=所对的边BD是斜边AB的一半.

定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半.

已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.求证:BC=

11BC.所以BD=AB,即在Rt△ABD中,∠BAD=30°,它221AB. 中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

AACB

BCD

分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.

[例5]右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长?

分析:观察图形可以发现在Rt△AED与Rt△ACB以DE=

DAECB中,由于∠A=30°,所DE=11AD,BC=AB,又由D是AB的中点,所以221AB. [例]等腰三角形的底角为15°,腰长为2a,求腰上的高.

已知:如图,在△ABC中,AB=AC=2a,∠腰AB上的高.

求:CD的长.

分析:观察图形可以发现,在Rt△ADC中,BDACABC=∠ACB=15°,CD是

AC=2a,而∠DAC是△ABC的一个外角,•则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,•可求出CD. 三.随堂练习

课本P56练习四.课时小结

这节课,我们在上节课的基础上推理证明了含30°的直角三角形的边的关系.这个定理是个非常重要的定理,在今后的学习中起着非常重要的作用. 五.课后作业

课本P57-58 11、12、13、14题.

等边三角形(练习课)

教学目的:

1.使学生进一步熟练理解等边三角形判定定理和性质. 2.能灵活地运用等边三角形判定定理和性质的知识解决问题.教学重点:

能灵活地运用等边三角形的知识解决问题。教学难点:

能灵活地运用等边三角形的知识解决问题。

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com 教具准备:三角板、小黑板

一、复习知识要点

1.三条边都相等的三角形叫做等边三角形,也叫做正三角形.

2.等边三角形的性质:•等边三角形的三个内角都相等,•并且每一个内角都等于60°

3.等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.

4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

二、练习

(一)、选择题

1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()

A.60°

B.90°

C.120°

D.150°

2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()

A.①②③

B.①②④

C.①③

D.①②③④

3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF•的形状是()

A.等边三角形

B.腰和底边不相等的等腰三角形

C.直角三角形

D.不等边三角形

AFDBEC

4.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()

A.2cm

B.4cm

C.8cm

D.16cm 5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准备的判断是()

A.等腰三角形

B.等边三角形

C.不等边三角形

D.不能确定形状 答案:

AE1D2BC

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com 1.C 2.D 3.A 4.C 5.B

(二)、填空题

6.△ABC中,AB=AC,∠A=∠C,则∠B=_______.

7.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______. 8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.

9.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,•则CD•的长度是_______. 答案:

6.60°

7.60°8.三;三边的垂直平分线

9.1cm

(三)、解答题

10.已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD•的夹角是多少度?

11.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC•于点D,•求证:•BC=3AD.ABDC

12.如图,已知点B、C、D在同一条直线上,△ABC和△CDE•都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD; ②求证:CF=CH;

③判断△CFH•的形状并说明理由.

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

AEFB

13.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.(提示:连接CE)

HCD

ADEB答案:

10.60°或120°

11.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∴在Rt△ADC中CD=•2AD,•

∵∠BAC=120°,∴∠BAD=120°-90°=30°,∴∠B=∠BAD,∴AD=BD,∴BC=3AD 12.①∵∠ACB=∠DCE=60°,∴∠BCE=∠ACD. 又∵BC=AC,CE=CD,∴△BCE≌△ACD; ②证明△BCF≌△ACH; ③△CFH是等边三角形.

13.连接CE,先证明△BCE≌△ACE得到∠BCE=∠ACE=30°,再证明△BDE•≌△BCE得到∠BDE=∠BCE=30°

C

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

中考网 www.xiexiebang.com

第五篇:八年级数学等腰三角形经典教案

燕园教育辅导中心

等腰三角形

一、等腰三角形含义:有两条边相等的三角形。

常见题:已知两边长和第三边,求周长。例题:两条边长分别为2和5,求周长,注意:两边之和大于第三边,两边之差小于第三边。

二、等腰三角形的性质:

1.等边对等角,例如:已知AB=AC,∠B=∠C 等腰三角形的性质:

2等腰△的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)。注意:只有等腰三角形才有三线合一。

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.

ABDC

3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角 所对的边也相等(简写成“等角对等边”).

4.[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么 这个三角形是等腰三角形.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图). 求证:AB=AC.

证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).

又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对练习:已知:如图,AD∥BC,BD平分∠ABC. 求证:

证明:∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等).

又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD(等角对等边).

BCADBCA12ED等边). AB=AD.

[例3]如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C•向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,•绳子CD和CE要多长?

燕园教育辅导中心

ACMCDDB(1)EBN(2)E

分析:这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题.

一、复习知识要点

1.有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.

不等边三角形

2.三角形按边分类:三角形底边和腰不相等的等腰三角形 等腰三角形等边三角形(正三角形)

3.等腰三角形是轴对称图形,其性质是:

性质1:等腰三角形的两个底角相等(简写成“等边对等角”)

性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.

4.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

二、例题

例:如图,五边形ABCDE中AB=AE,BC=DE,∠ABC=∠AED,点F是CD的中点.•求证:AF⊥CD.分析:要证明AF⊥CD,而点F是CD的中点,联想到这是等腰三角形特有的性质,•于是连接AC、AD,证明AC=AD,利用等腰三角形“三线合一”的性质得到结论.

证明:连接AC、AD 在△ABC和△AED中

ABAE(已知)ABCAED(已知)BCED(已知)∴△ABC≌△AED(SAD)

∴AC=AD(全等三角形的对应边相等)

又∵△ACD中AF是CD边的中线(已知)

ABECFD

∴AF⊥CD(等腰三角形底边上的高和底边上的中线互相重合)

燕园教育辅导中心

三、练习

(一)、选择题

1.等腰三角形的对称轴是()

A.顶角的平分线

B.底边上的高

C.底边上的中线

D.底边上的高所在的直线

2.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()

A.17cm

B.22cm

C.17cm或22cm

D.18cm 3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()

A.40°

B.50°

C.60°

D.30° 4.等腰三角形的一个外角是80°,则其底角是()

A.100°

B.100°或40°

C.40°

D.80°

5.如图1,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是()

A.80°

B.90°

C.100°

D.108°

GECABDFHEFA

如图1

答案:

BDC1.D 2.B 3.A 4.C 5.B

如图2

(二)、填空题

6.等腰△ABC的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.

8.等腰三角形的顶角是n°,则两个底角的角平分线所夹的钝角是_________.

9.如图2,△ABC中AB=AC,EB=BD=DC=CF,∠A=40°,则∠EDF•的度数是_____. 10.△ABC中,AB=AC.点D在BC边上

(1)∵AD平分∠BAC,∴_______=________;________⊥_________;

(2)∵AD是中线,∴∠________=∠________;________⊥________;

(3)∵AD⊥BC,∴∠________=∠_______;_______=_______. 11.△ABC中,∠A=65°,∠B=50°,则AB:BC=_________.

燕园教育辅导中心

12.已知AD是△ABC的外角∠EAC的平分线,要使AD•∥BC,•则△ABC•的边一定满足________. 13.△ABC中,∠C=∠B,D、E分别是AB、AC上的点,•AE=•2cm,•且DE•∥BC,•则AD=________. 答案:

6.60

7.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 8.(90+ 1n)°

9.70°

10.略

11.1

12.AB=AC

13.2cm

14.30海里 21AB,你知道∠ACB的度数是多少吗?由

2(三)、解答题

15.如图,CD是△ABC的中线,且CD= 此你能得到一个什么结论?请叙述出来与你的同伴交流.

ADC16.如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠ABC=∠ADC.B

ABDC17.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,• 求证:△DBE是等腰三角形.

DBEA答案:

FC

15.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角

燕园教育辅导中心

16.连接BD,∵AB=AD,∴∠ABD=∠ADB.∵CB=CD,∴∠CBD=∠CDB. ∴∠ABC=∠ADC 17.证明∠D=∠BED

等边三角形

定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半.

已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.求证:BC=

A1AB. 2ACB

BCD

分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.

[例5]右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长?

分析:观察图形可以发现在Rt△AED与Rt△ACB以DE=

DAECB中,由于∠A=30°,所DE=11AD,BC=AB,又由D是AB的中点,所以221AB. [例]等腰三角形的底角为15°,腰长为2a,求腰上的高.

已知:如图,在△ABC中,AB=AC=2a,∠腰AB上的高.

求:CD的长.

分析:观察图形可以发现,在Rt△ADC中,BDACABC=∠ACB=15°,CD是

AC=2a,而∠DAC是△ABC的一个外角,则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,可求出CD.

等边三角形

一、复习知识要点

1.三条边都相等的三角形叫做等边三角形,也叫做正三角形.

2.等边三角形的性质:•等边三角形的三个内角都相等,•并且每一个内角都等于60°

3.等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.

4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

二、练习

燕园教育辅导中心

(一)、选择题

1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()

A.60°

B.90°

C.120°

D.150°

2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()

A.①②③

B.①②④

C.①③

D.①②③④

3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF•的形状是()

A.等边三角形

B.腰和底边不相等的等腰三角形

C.直角三角形

D.不等边三角形

AFDBEC

AE1D2BC

4.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()

A.2cm

B.4cm

C.8cm

D.16cm 5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准备的判断是()

A.等腰三角形

B.等边三角形

C.不等边三角形

D.不能确定形状 答案:

1.C 2.D 3.A 4.C 5.B

(二)、填空题

6.△ABC中,AB=AC,∠A=∠C,则∠B=_______.

7.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______. 8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.

9.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,•则CD•的长度是_______. 答案:

6.60°

7.60°8.三;三边的垂直平分线

9.1cm

燕园教育辅导中心

(三)、解答题

10.已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD•的夹角是多少度? 11.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC•于点D,•求证:•BC=3AD.ABDC

12.如图,已知点B、C、D在同一条直线上,△ABC和△CDE•都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD; ②求证:CF=CH;

③判断△CFH•的形状并说明理由.

AEFBCHD

13.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.(提示:连接CE)

ADEB答案:

10.60°或120°

11.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∴在Rt△ADC中CD=•2AD,•

∵∠BAC=120°,∴∠BAD=120°-90°=30°,C

燕园教育辅导中心

∴∠B=∠BAD,∴AD=BD,∴BC=3AD 12.①∵∠ACB=∠DCE=60°,∴∠BCE=∠ACD. 又∵BC=AC,CE=CD,∴△BCE≌△ACD; ②证明△BCF≌△ACH; ③△CFH是等边三角形.

13.连接CE,先证明△BCE≌△ACE得到∠BCE=∠ACE=30°,再证明△BDE•≌△BCE得到∠BDE=∠BCE=30° Ⅲ、随堂练习,变式训练

练习1:请同学们做课本51页的练习第一题,同时教师在黑板上补充一下题目: 求等腰三角形个角度数:

(1)在等腰三角形中,有一个角的度数为36°.(2)在等腰三角形中,有一个角的度数为110°.学生思考,练习,教师指导,并给出答案,之后引导学生对以上这种类型的题目存在的规律进行归纳总结。归纳:已知等腰三角形的一个内角的度数,求其它两角时,(a)若已知角为钝角或直角,则它一定是顶角;(b)若已知角为锐角,它可能是顶角,也可能是底角。

本次变式训练中,教师应重点关注:(1)学生能否正确应用等腰三角形的性质;(2)学生是否注意到等腰三角形的地窖一定是锐角;(3)学生是否注意到可能的多种情况;(4)学生是否注意到等腰三角形的顶角可能是钝角,但底角一定是锐角。

设计意图:及时巩固所学知识,了解学生学习效果,增强学生应用知识时培养学生分类讨论的思想。

练习2:已知:在△ABC中,AB=AC,BD=DC.② AD=4,BC=6时,求SABC 的能力,同②当B50时,求1的度数。

燕园教育辅导中心

①ABAC,BCDCADBC(等腰三角形地边上的中线,底边上的高相互重合)又AD4,BC611ADBC461222解:②ABAC,BCDCSABC又B50,ABACCB50(等边对等角)BAC180250801240解:

练习2的训练主要是让学生学会应用等腰三角形的性质2来解题。

设计意图:及时巩固所学知识,了解学生学习效果,增强学生应用知识的能力,同时培养学生分类讨论的思想。

Ⅳ、应用深化,巩固提高

例:在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

课本例题,学生讨论问题,教师参与讨论,认真听取学生的分析,引导学生找出角之间的关系,书写解答过程。

解:因为AB=AC, BD=BC=AD 所以∠ABC=∠C =∠BDA, ∠A =∠ABD(等边对等角)设∠C=x,则

∠BDA=∠A+∠ABD=2 x

从而∠ABC=∠C =∠BDA=2 x 于是在△ABC中,有 ∠A+∠ABC+∠C=180° 解得x=36°

在△ABC中,∠A=36°,∠ABC=72°,∠C=72°。

通过例题讲解,教师应重点关注:(1)学生能否正确应用等腰三角形的性质解决问题;(2)学生应用所学知识的应用意识。

设计意图:培养学生正确应用所学知识的应用能力,增强应用意识,参与意思,巩固所学性质。Ⅴ、课时小结

1(等腰三角形底边上的2中线、顶角的角平分线相互重合)A

D B C

燕园教育辅导中心

请大家拿出前面剪得的等腰三角形,与小组同学一起结合图形指出你知道的内容。等腰三角形的两个底角相等(简称“等边对等角”);等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。教师重点关注:①归纳、总结能力;②不同层次的学生对本节知识的认识程度;③学生独立面对困难和克服困难的能力。

设计意图:总结回顾学习内容,帮助学生归纳,激发学生主动参与的意识,为每一位学生创造在数学学习活动中获得成功的体验机会,并为程度不同的学生提供充分展示自己的机会。

一、选择题(每题6分,共30分)每题有且只有一个正确答案

1.等腰三角形(不等边)的角平分线、中线和高的条数总和是()A.

3B.

5C.7

D.9 2.在射线、角和等腰三角形中,它们()轴对称图形 A.都是

B.只有一个是 C.只有一个不是

D.都不是

3.如下图:△ABC中,AB=AC,∠A=36°,D是AC上一点,若∠BDC=72°,则图形中共有()个等腰三角形。

A.

1B.

2C.

3D.4

4.三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,则这个三角形一定是()

A.等腰三角形 B.等腰直角三角形 C.非等腰三角形 D.等边三角形

5.△ABC中,AB=AC,AB边的中垂线与直线AC所成的角为50°,则∠B等于()A.70°

B.20°或70° C.40°或70°

D.40°或20°

二、填空题(每题6分,共30分)

1.等腰三角形中的一个外角为130°,则顶角的度数是_______________。

2.△ABC中,AB=AC,CD⊥AB于D,CD=3,∠B=75°,则AB=_________________ 3.如下图:△ABC 中,AB=AC,DE是AB中垂线交AB、AC于D,E,若△BCE的周长为24,AB=14,则BC=________,若∠A=50°,则∠CBE= ______________。

燕园教育辅导中心

4.等腰三角形中有两个角的比为1:10,则顶角的度数是__________________。

5.如下图:等边△ABC,D是形外一点,若AD=AC,则∠BDC=_____________度。

三、作图题(6分),只画图,不写作法。如左图:直线MN及点A,B。

在直线MN上作一点P,使∠APM=∠BPM。

四、解答题(第1小题12分,第2、3小题各11分)

1.已知:如图△ABC中,AB=AC,BD⊥AC,CE⊥AB,BD、CE交于H。求证:HB=HC。

2.已知:如图:等边△ABC,D、E分别是BC、AC上的点,AD、BE交于N,BM⊥AD于M,若AE=CD,求证:MN1BN。2

燕园教育辅导中心

3.已知:如图:△ABC中,AD⊥BC于D,∠BAC=120°,AB+BD=DC。求:∠C的度数。

选作题:

已知:如图:△ABC中,D是BC上一点,P是AD上一点,若∠1=∠2,PB=PC。求证:AD⊥BC。

参考答案

一、选择题(每题6分,共30分)每题有且只有一个正确答案 1.C2.A3.C4.D5.B

二、填空题(每题6分,共30分)1.50°或80° 2.6 3.10,15° 4.150°或60 75.30

三、作图题(6分),只画图,不写作法。

燕园教育辅导中心

四、解答题(第1小题12分,第2、3小题各11分)

证明:∵AB=AC,∴∠ABC=∠ACB(同一△中等边对等角)∵CE⊥AB,∴∠1+∠ABC=90°(直角三角形中两个锐角互余)同理∠2+∠ACB=90°,∴∠1=∠2,∴HB=HC(同一△中等角对等边)

2.证明:∵等边△ABC,∴AC=BA,∠C=∠BAC=60°

在△ABE和△CAD中,∵BA=AC,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS)∴∠2=∠1 ∵∠BNM=∠3+∠2,∴∠BNM=∠3+∠1=∠BAC=60° ∵BM⊥AD,∴∠4+∠BNM=90°,∴∠4=30° ∵BM⊥AD,∴MN1BN(直角三角形中,30°角所对直角边等于斜边的一半)2

3.解:延长DB到E,使BE=AB,连结AE,则∠1=∠E。∵∠ABC=∠1+∠E,∴∠ABC=2∠E ∵AB+BD=DC,∴BE+BD=DC,即DE=DC ∵AD⊥BC,∴AE=AC,∴∠C=∠E,∴∠ABC=2∠C ∵∠ABC+∠C+∠BAC=180°,∠BAC=120° ∴2∠C+∠C=180°-120°=60°,燕园教育辅导中心

∴∠C=20°

答:∠C的度数是20°

选作题

证明:作PM⊥AB于M,PN⊥AC于N ∵∠1=∠2,∴PM=PN 在Rt△BPM和Rt△CPN中

PMPN PBPC∴Rt△BPM≌Rt△CPN(HL)∴∠ABP=∠ACP ∵PB=PC,∴∠PBC=∠PCB。

∴∠ABP+∠PBC=∠ACP+∠PCB,即∠ABC=∠ACB。∴AB=AC,∵∠1=∠2 ∴AD⊥BC

下载2017学年八年级数学上册13.3等腰三角形第2课时教案(精选5篇)word格式文档
下载2017学年八年级数学上册13.3等腰三角形第2课时教案(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    八年级数学上册等腰三角形说课稿

    八年级数学上册等腰三角形说课稿 等腰三角形说课稿尊敬的各位评委、各位老师,大家好!今天我说课的题目是《等腰三角形》, 本节是义务教育课程标准实验教科书人教版数学八年级......

    浙教版八年级上册数学《2.3 等腰三角形的性质定理第1课时 等腰三角形的性质定理1》教案

    第2章特殊三角形2.3等腰三角形的性质定理第1课时等腰三角形的性质定理11.能够借助数学符号语言利用综合法证明等腰三角形的性质定理.2.经历“探索-发现-猜想-证明”的过程,让学......

    八年级数学上册 12.3等腰三角形(第3,4,5课时)教案 人教新课标版

    12.3等腰三角形(2) 等边三角形(一) 教学目的 1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。 2. 熟识等边三角形的性质及判定. 2.通过例题教学,帮助学生总结代数......

    八年级数学等腰三角形教案(精选五篇)

    等腰三角形(一) 教学目标: 1.等腰三角形的概念. 2.等腰三角形的性质 . 3.等腰三角形的概念及性质的应用. 教学重点 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用. 教学难点 等......

    小学六年级数学上册第3课时教案

    第3课时:长方体和正方体的表面积(1) 教学内容:第6页例4、“试一试”和“练一练”,练习二第1-4题。 教学目标: 1.理解表面积的含义,能正确计算6个面完整的长方体和正方体的表面积。 2......

    八年级数学上册 等腰三角形教案 苏科版

    等腰三角形 教学目的:会根据等腰三角形的识别与性质去解决问题,学会总结、归纳。 教学重点:找出问题中的等腰三角形并运用其性质解决问题。 教学难点:感悟转化、分类、由一般到......

    湘教版数学八年级上册2.3《等腰三角形》教案-word文档大全

    《等腰三角形》教案 教学目标 1.探索并证明等腰三角形的两个性质. 2.能利用性质证明两个角相等或两条线段相等. 3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题......

    空竹教案.第2、3课时

    第 2 课时 授课教师:郭书房授课地点:操场 时间:2014年9月 24 日 教学目标: 1、通过介绍抖空竹,使学生对抖空竹这一民间体育项目有一个初步的了解。 2、初步掌握抖空竹的“起范”......