第一篇:初中数学解答题解题规范
初中数学解答题解题规范
解题规范就是指在解答初中数学解答题时,要按一定的格式进行,做到表达
清楚,层次分明,结论明确,论证充分在数学的解题过程中,解题过程不仅要求做到目的明确,同时还要说服有力,论证规范 具体地说,规范就是对每一种类型的问题解答的格式,都要做到严密严谨,滴水不漏,无懈可击从解题的严密性和完备性角度来说,一个清晰的初中数学的解题过程,就是一个学生思路清晰的明证 笔者在初中数学教学中,对一些解答题的解题规范进行了一些探索和思考一初中数学解答题解
题规范中存在的问题一个合理的解题书写过程,应有理有据环环相扣,即符合逻辑 但是学生解题除字迹潦草和书写不整洁外,主要还存在忽视审题解答书写不严密和题后无审查等问题
做题时忽视审题
不少学生走马观花地粗心读题,甚至做题时经常不读题,就根据自己的经验及 老师讲过的去做题,相当然地去做题具体表现为,一是只会找出明确告诉的已知条 件和目标,不思考文字语言符号语言图形语言的转换,更不会揭示隐含条件 二是 不去分析从条件到目标缺少什么,只能从条件顺推,不能思考从目标去分析,更缺少 比比画画和写写算算的关联草图,找不出它们的内在联系三是没有考虑条件目标 之间的联系与哪个数学原理相匹配,造成解题过程混淆
解答书写不严密
数学解题讲究层次分明条理清楚,而学生解答过程中往往存在阐述不清的问
题 常见的有:随便用数学符号;推理中跳跃性过大,每步之间跨度掌握不够;解题呈 现混乱,代数化简求值不按要求进行,直接代入,缺乏条理性;解答题不写解;立体 几何对作证算三个环节处理不妥当,讲起来头头是道,就是不会规范书写解题过 程,甚至因果颠倒
解题后无审查
有时初中学生一做完题就算大吉,不去审查解题本身是否混淆了概念是否忽 视了隐含条件是否特殊代替一般,不去探究有无其他解题方法和题目能否变换 学生学习的思维定势造成解题缺乏()认真审题 审题是数学解题的重要
环节,理清正确的思路就抓住了解题的关键,所以例题教学应注重审题方法,做到读 画明定读就是理解它的每一个字词和一句话,弄清题目中的已知和结论,找 题
眼;画指题目进行数学语言的转换,画出必要的图形或示意图,从中发现隐含的条件; 明就明确题中给出的字母或式子的含义,理
第二篇:初中数学解答题解题策略
垫江县2013年中考数学复习研讨会资料二
1浅谈中考数学解答题的解题策略
重庆垫江九中蒋正琼
解答题在每年的中考中是拉距离的题型,现在已经进入第二轮复习了,为了学生在做解答题时减少失误,方法上有所突破,应试能力有较大的提高,这个时候很有必要进行针对性的点拨。变第一轮复习的“补弱为主”为“扬长补弱”。一般,成绩居中上游的学生,应以“扬长”为主,居下游的学生,应以“补弱”为主,处理好“扬长”与“补弱”的分层推进关系,是大面积丰收的重要举措。为了处理好这个关系,个人认为完成解答题应让学生把握好以下各个环节:
(1)审题:
这是解答题的开始,也是解答题的基础,一定要全面审视题目的所有条件和解题要求,以求正确全面的理解题意,在整体上把握试题的特点,结构,以利于解题方法的选择和解题步骤的设计。审题时要注意各种数学语言的识别,要注意捕捉所有的信息,特别是重要的,关键的信息。因此我们在教学中应注重学生阅读分析能力训练。当试题的叙述较长时,不少学生往往摸不着头脑,抓不住关键,从而束手无策,究其原因就是阅读分析能力低。解决的途径是:让学生自己读题、审题、作图、识图、强化用数学思想和方法在解题中的指导性,强化变式,有意识有目的地选择一些阅读材料,利用所给信息解题等。在当今信息时代,收集和处理信息的能力,对每一个人都是至关重要的,也是中考命题的热点。
(2)寻求合题的解题思路和方法,破除模式化,力求创新是近几年中考数学试题的显著特点。解答题体现得尤为突出,因此切记套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系,图形的几何特征与数式的数量特征的关系,谨慎地确定解题的思路和方法,当思维受阻是,应及时调整思路和方法,并重新审视题意,注意挖掘题目隐含的已知条件和内在联系,要防止钻牛角尖,又要防止轻易放弃。
(3)设计有效的解题过程和步骤
初步确定解题的思路和方法后,就要设计好解题的过程和步骤,切忌盲目下笔,顾此失彼,解题过程中的每个步骤都要做到推理严谨,言必有据,演算准确,表达得当,及时核对数据,进行必要的检查,注意不要跳步,防止无根据的判断,防止只凭直观,以不存在的图形特征做为条件进行推理,有些单纯的数式计算步骤可以适当省略,但要注意不要因此而出现计算错误。
(4)力求表达得当:
所答与所问要对应,且不要用不规范的语言,不要以某些习题中的结论为依据(定理除外),只写结论,不写过程。2013-5-30
(5)画好图形:
做到定形(状),定性(质),定(数)量,定位(置),注意图形中的可变因素,注意图形的运动和变换,画好图形,对理解题意、寻求思路、检查答案都可以发挥重要的作用,切忌只求示意,不求准确。
【典例精析】----解答题的常见题型
1、代数计算题(教学中应该要求学生会实数的计算、三角函数、方程、因式分解、不等式/ 组、代数式的求值,数轴题等,)
例1:计算
例:
2、先化简,再求值,(1a212),其中a31.a1a1a
12、图形题(作图题/平移,中心对称、轴对称、相似变换、位似变换等一般只有1题,6~8分左右)。这类题目估计一般在格点中作图,平时在教学中,我们应多演示,让学生有个感观的认识,并在考试时,注意要求学生想好后再作答,以免失分)
例3.在正方形网格中建立如图9所示的平面直角坐标系xoy.△ABC的三个顶点部在格点上,点A的坐标是(4,4),请解答下列问题;
(1)将△ABC向下平移5个单位长度,画出平移后的A1B1C1,并写出点A1 的坐标;
(2)画出△A1B1C1关于y轴对称的△A2B2C
2(3)将△ABC绕点C逆时针旋转90°,画出旋转后的的△
A3B3C。
3、函数/方程/不等式应用题(与生活实际联系的一道应用题,应加强一次函数,反比例函数,二次函数的强调)
例
4、近期,海峡两岸关系的气氛大为改善。大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售。某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
设当单价从40元/千克下调了,销售量为y千克; ...x元时..
⑴、写出y与x间的函数关系式;
⑵、如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元..2013-5-30
时,当天的销售利润W最大?利润最大是多少?
⑶、目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?
⑷、若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?
4、统计与概率题(画统计图、填统计表、计算极差、平均数、方差、众数,方案设计,概率统计,经常与方程联系起来考利润问题,盈亏问题,)这类题目一般会出来两个图的信息,条形图,折线图,直方图,扇形图,注意:解答本题的关键是读懂统计图(表),从中获取正确的信息。)
例5:“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成图7-2-8的两幅统计图(尚不完整).
图7-2-8
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8 000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A,B,C,D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
5.几何证明题(一般是线段的和差证明,应加强辅助线的总结)
例
6、如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°,在△ABE和△CBF中,AB=BC ∠ABC=∠ABC BE=BF,∴△ABE≌△CBF(SAS),∴∠BFC=∠BEA;
(2)连接DG,在△ABG和△ADG中,AB=AD ∠DAC=∠BAC=45° AG=AG,2013-5-30
∴△ABG≌△ADG(SAS),∴BG=DG,∠2=∠3,∵BG⊥AE,∴∠BAE+∠2=90°,∵∠BAD=∠BAE+∠4=90°,∴∠2=∠3=∠4,∵GM⊥CF,∴∠BCF+∠1=90°,又∠BCF+∠BFC=90°,∴∠1=∠BFC=∠2,∴∠1=∠3,在△ADG中,∠DGC=∠3+45°,∴∠DGC也是△CGH的外角,∴D、G、M三点共线,∵∠3=∠4(已证),∴AM=DM,∵DM=DG+GM=BG+GM,∴AM=BG+GM.
6、函数图象题(一般都会与三角形、四边形联系起来,通常求交点个数及坐标、平移后的解析式、长度问题,面积问题,与坐标轴夹角及夹角的三角函数值,)
例7.如图, 已知抛物线y12xbxc与y轴相交于C,与x轴相交于A、B,点A的2坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面
积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.25题图备用图
7、压轴题,几何动态问题。(动点问题与四边形、三角形,涉及到面积、相似、点的存在问题等等,当然还常有函数的综合应用题)。此题通常是全卷最难的题目,而且放在最后,时间紧张,心理压力大,不容易集中精力,往往不能很好的发挥自己的水平平,但每个小题的难度却不相同,往往(1)小题可能比前面的题目要简单很多,而(2)小题、(3)小题的难度会逐步以较大幅度增加。因此我们在教学中,应改对每个层次的学生要求不一样,对于中等水平的考生,可以放弃这些题目的解答,将时间用在前110分的题目上,完成这些题2013-5-30
目的解答后将剩余的时间用来检查前面题目的解答是否正确,保证将会做得题目做对,将分拿到手。对于平时程度较好的同学,在保证前面分能够拿到手之后还有时间,不妨完成在最后这道题目的前面的小题,争取做对,多拿一些分。
对于数学成绩特别优秀的学生,完成前面的题目用不了很多时间,会留下很多时间,但不应急于解答压轴题,也应该先检查前面解答题目的过程和结果是否正确,确保前面分拿到手,然后集中精力完成最后一题的解答
例题8:如图(1),将Rt△AOB放置在平面直角坐标系xOy中,∠A=90°,∠AOB=60°,OB
=A90,AOB60,OBOB在x轴的正半轴上,点A在第一象限,
AOB的平分线OC交AB于C.动点P从点B出发沿折线BCCO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线COOy以相同的速度运动,当点P到达点O时P、Q同时停止运动.
(1)OC、BC的长;
(2)设CPQ的面积为S,求S与t的函数关系式;
(3)当P在OC上、Q在y轴上运动时,如图(2),设PQ与OA交于点M,当t为何值时,OPM为等腰三角形?求出所有满足条件的t值.
我相信:通过以上这样的教学,我们能让学生领悟到“舍得”的道理,舍得舍得,有舍才有得。就是让他们尽量减少基础题失误,中档题和难题尽力争多得分,但不要抱着得高分的思想包袱,只要该得的得了,可得可不得的也得一部分,不该得的没有得分也没关系,不会影响自己的考试心情,这样就能轻松考试,结果往往是超常发挥,至少正常发挥。2013-5-30
第三篇:初中数学解题格式的规范
初中数学解题格式的规范
一、关于填空题:
《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
关于填空题,常见错误或不规范的答卷方式有:字迹不工整、不清晰、字符或字母的书写不规范或不正确等,等号与不等号没写就直接写数据;计算或化简没写最后结果;列代数式没化简;漏写单位;方程的解没写“x=”;函数表达式漏写“y=”,因式分解不彻底等。
二、关于解答题
解答题应答时,学生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,其次,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,答题过程要整洁美观、逻辑思路清晰、概念表达准确、答出关键语句和关键词。比如要将你的解题过程转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些学生忽视,因此,卷面上大量出现“会而不对”“对而不全”的情况。如简单几何证明题中的“跳步”,使很多人丢失得分, 尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转移为“文字语言”,尽管学生“心中有数”却说不清楚,因此得分少。只有重视解题过程的语言表述,“会做”的题才能“得分”。对容易题要详写,过程复杂的试题要简写,答题时要会把握得分点。
三、常见的规范性问题
1、在做计算题、化简求值、解方程、解应用题时,答题的开始必须写“解”字,然后再根据情况再写:“原式=”、“该式化简为=”、“将x=代入化简式=”、“原方程=”、“由题意得”等解题提示语。
2、在做几何证明题时,答题的开始必须写“证明”、“由已知得”等文字语言,过程中每一证明步骤后都要用括号将理由写出,不容许跳跃步骤。最后一定要写出结论来。如:“因此”、“所以”
3、方程(组)的结果一般用解(x1=x2=)表示;不等式(组)的结果一般用解集(<
x<)表示
4、带单位的计算题或应用题,最后结果必须带单位,特别是应用题解题结束后一定要写符合题意的“答”。
5、数学题目的任何结果要最简。而且有必要要检验。
5、尺规作图:要求:已知求作的语句严谨,要求用几何语言。切忌直接抄写原题中的语句作为已知求作。画图时,最好用上正规的尺规作图。要用铅笔来作图,注意图示和整体的比例,弧线画长一点,初中生的作图工具是三角尺一副,圆规一个,量角器一块,直尺一把,铅笔一枝。
6、解数学题尽量要作示意图,以便结合图形分析题意,养成数形结合思考问题的好习惯。
7、化简求值:切忌:直接代值,约分时在式子上划斜线等不良习惯;(第一步,一定要展示出对三个知识点(提公因式、平方差公式、完全平方公式)的理解应用的过程,基本上是一个点一分)
8、函数:求解析式时带入点的坐标,必须展示代值的过程。如果函数的自变量有取值范围,一定要在函数式后注明取值范围。
9、对于计算结果数字较大的,要求用科学记数法的形式来书写结果。
10、分数线要划横线,不用斜线。
11、几何证明与计算:(辅助线必画虚线,并用几何语言准确叙述)
12、分类讨论题,一般要写综合性结论。
13、数学应用题要按照“审、设、列、解、答”的格式书写。如果用方程或者方程组来解应用题的话,一定不要忘了开始就用文字语言设出x来,题目有规定单位的,还要带上单位。最后结果还要进行必要的检验。
14、答题要用钢笔、水笔或圆珠笔书写,字迹要整齐,端正;要根据题目要求和所给的条件,统一单位。解题时局部有错用斜线划去;如果整体不要,从左上向右下画斜线,并在旁边工整地写上“不要”两字;禁止用涂改液涂抹掉。
15、注意数学符号、字母的书写,如三角形以及三角形的基本元素符号的书写、线段、直线、射线的书写等。三角形全等,及其线段相等,角相等的数学表达式等。
四、要养成良好的答题习惯,做到解题的规范性,需要师生在教学过程中,从点滴做起,重在平时,坚持不懈,养成习惯。做好以下几点: ①课堂教学有示范;②平时作业要落实;③测验考试看效果;④评分标准做借鉴。
第四篇:初中数学证明题解答
初中数学证明题解答
1.若x1,x2∈|-1,1且x1*x2+x2*x3+……+xn*x1=0
求证:4|n
(x1,x2,x3,xn中的数字和n均下标)
2.在n平方(n≥4)的空白方格内填入+1和-1,每两个不同行且不同列的方格内数字的和称为基本项。
求证:4|所有基本项的和
1.y1=x1*x2,y2=x2*x3,……,yn=xn*x1
==>
y1,y2,..,yn∈{-1,1},且y1+..+yn=0.设y1,y2,..,yn有k个-1,则有n-k个1,所以
y1+..+yn=n-k+(-k)=n-2k=0
==>n=2k.而y1*y2*..*yn=(-1)^k=^2=1
==>k=2u
==>n=4u.2.设添的数为x(i,j),1≤i,j≤n.基本项=x(i,j)+x(u,v),i≠u,j≠v.这时=x(i,j)和x(u,v)组成两个基本项
x(i,j)+x(u,v),x(u,v)+x(i,j),和x(i,j)不同行且不同列的x(u,v)有(n-1)^2个,所以每个x(i,j)出现在2(n-1)^2个基本项中.因此所有基本项的和=2(n-1)^2.设x(i,j)有k个-1,则
所有基本项的和=2(n-1)^2=
=2(n-1)^
2显然4|2(n-1)^2,所以4|所有基本项的和.命题:多项式f(x)满足以下两个条件:
(1)多项式f(X)除以X^4+X^2+1所得余式为X^3+2X^2+3X+
4(2)多项式f(X)除以X^4+X^2+1所得余式为X^3+X+2
证明:f(X)除以X^2+X+1所得的余式为X+
3X^4+X^2+1=(X^2+X+1)·(X^2-X+1)
X^3+2X^2+3X+4=(X^2+X+1)·(X+1)+X+3
X^3+X+2=(X^2+X+1)·(X-1)+X+3
====>f(X)除以X^2+X+1所得的余式为X+3
各数平方的和能被7整除.”“证明”也称“论证”,是根据已知真实白勺判断来确某一判断的直实性的思维形式.只有正确的证明,才能使一个真判断的真实性、必然性得到确定.这是过去同学们较少涉足的新内容、新形式.本刊的“有奖问题征解”中就有不少是证明题(证明题有代数证明题和几何证明题等),从来稿看,很多同学不会证明.譬如上题就是代数证明题,不少同学会取出一组或几组连续的自然数,如O+1+2+3+4+5+6z一91—7×13,1+2+3+4+5+6+7z一140—7×2O后,便依此类推,说明原题是正确的,以为完成了证明.其实,这叫做“验证”,不叫做证明.你只能说明所取的数组符合要求,而不能说明其他的数组就一定符合要求,“验证”不具备一般性、必然性.这道题的正确做法是:证明设有一组数n、n+
1、n+
2、n+
3、n+
4、n+
5、n+6(n为自然数),‘.‘+(n+1)+(n+2)2+(n+3)2+(n+4)2+(n+5)2+(n+6)2一n2+(n2+2n,4-1)+(n2+4n+4)+(n2+6n+9)+(n2+8n+16)+(n2+10n+25)+(n+12n+36)一7nz+42n+91—7(nz+6n+13),.‘.n+(n+1)2+(n+2)2+(n+3)2+(n+4)2+(n+5)+(n+6)能被7整除.即对任意连续7个自然数,它们平方之和都能被7整除.(证毕)显然,因为n可取任意自然数,因此n,n+1,n+2,n+3,n+4,n+5,n+6便具有一般性,所得结论也因此具有然性.上面的证明要用到整式的乘法(或和的平方公式)去展开括号,还要逆用乘法对加法的分配律进行推理.一般来说,代数证明的推理,常要借助计算来完成.证明中的假设,应根据具体情况灵活处理,如上例露勤鸯中也可设这7个数是n一
3、n一
2、n一
1、n、n+
1、n+
2、n+3(n为自然数,且n≥3).这时,它们的平方和就会简便得多.证明由论题.论据和论证方式组成.常用的论证方式有直接证明和间接证明、演绎证明和归纳证明.上例中的题目便是论题,证明中“‘.”’之后是论据,“.‘.”之后是结论,采用的论证方式是直接证明.以后还要学习几何的证明,就会对证明题及其解法有更全面、更深入的了解.几何题的证明则较多采用演绎证明.证明是对概念、判断和推理的综合运用,是富有创造性的思维活动,在发现真理、确认真理、宣传真理上有重要的作用.当你学习并掌握了“证明”的方法及其精髓以后,数学向你展示的美妙与精彩,将使你受到更大的激励,享有更多成功的喜悦。
第五篇:初中数学解题方法
初中数学选择题解题方法与技巧
胡桥一中许锁林
初中数学选择题解题方法
胡桥一中许锁林
对于选择题,关键是速度与正确率,所占的时间不能太长,否则会影响后面的解题。提高速度与正确率,方法至关重要。方法用得恰当,事半功倍,希望大家灵活运用。做选择题的主要方法有:直接法、特值法、代入法(或者叫验证法)、排除法、数形结合法、极限法、估值法等。
(一)直接法:
有些选择题是由计算题、应用题、证明题、判断题改编而成的.这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法叫直接法.这种解法最常用,解答中也要注意结合选项特点灵活做题,注意题目的隐含条件,争取少算.这样既节约了时间,又提高了命中率。9001500例:方程的解为()x300x
ABCD
解:直接计算,同时除以300,再算的x=750。
(二)特值法:
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。特值法一般和排除法结合运用,达到少计算的目的,从而提高速度。
例:如图,在直角坐标系中,直线l对应的函数表达式是()
A.yx1B.yx1C.yx1 D.yx
1解:看图得,斜率k>0,排除CD,再在AB中选,取特值
x=0,则y=-1,结果选A。
(三)代人法:
通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法.
例3.(2007年安徽)若对任意x∈R,不等式围是()
(A)<-1(B)||≤1(C)||<1(D)≥1 解:
化为化为,显然恒成立,由此排除答案A、D,也显然恒成立,故排除C,所以选B;
恒成立,则实数的取值范
此解法也可以称之为特值法。
(四)排除法:
从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断。它与特例法(特值法)、图解法等结合使用是解选择题的常用方法。
例:直线ykxb经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是()
2A.y2x3B.yx2C.y3x2D.yx1
3解:当x=0时,y=2,可以排除AD,当x=3时,y=0,直接选A。
(五)数形结合法:
据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,综合图象的特征,得出结论.
(2007年江西)若0<x<,则下列命题中正确的是()
A.sin x< B.sin x> C.sin x< D.sin x>
与解:sin x
等三角函数会在九下学。在同一直角坐标系中分别作出的图象,便可观察选D
(六)极限法:
从有限到无限,从近似到精确,从量变到质变.应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程。它是在选择题中避免“小题大做”的有效途径.它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,计算简便,迅速找到答案. 例:对于任意的锐角
(A)
(C),下列不等关系式中正确的是()(B)(D),时
排除 解:(九年级下学期学)当当,时
排除选D.(七)估值法:
由于选择题提供了唯一正确的选择支,解答又无需过程.因此可以猜测、合情推理、估算而获得.这样往往可以减少运算量,当然自然加强了思维的层次.例:如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF,EF与面AC的距离为2,则该多面体的体积为()
(A)(B)5(C)6(D)
解:由已知条件可知,EF∥平面ABCD,则F到平面ABCD的距离为2,∴VF-ABCD
=*底面积*高
=·32·2=6,而该多面体的体积必大于6,故选(D).