随机抽样教案

时间:2019-05-12 22:10:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《随机抽样教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《随机抽样教案》。

第一篇:随机抽样教案

十一年级数学

学案导学

助你成功

主备:王荣华

2.1.1 简单随机抽样(4课时)

□自学导读·领悟基础知识我能行

【学习目标】

1、知识与技能:

(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

2、过程与方法:

(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、重点与难点:

正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤 并能灵活应用相关知识从总体中抽取样本。【读书思考】

假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?

显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢? 【探究归纳】

知识点

一、相关概念

1.总体,个体:统计中所考察对象的某一数值指标的全体构成的集合看作总体,构成总体的每一个元素作为个体。

2.样本:为研究总体的性状,从总体中随机地抽取若干个体进行考察,这若干个个体构成的集合叫做总体的一个样本,样本中个体的数目称为样本容量。

知识点二:简单随机抽样的概念

一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

【说明】简单随机抽样必须具备下列特点:

(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。(2)简单随机样本数n小于等于样本总体的个数N。(3)简单随机样本是从总体中逐个抽取的。(4)简单随机抽样是一种不放回的抽样。

(5)简单随机抽样的每个个体入样的可能性均为n/N。例1.下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。十一年级数学

学案导学

助你成功

主备:王荣华

(2)箱子里共有100个零件,从中选出一次选出10个零件进行质量检验。

(3)一彩民选号,从装有36个大小,形状都相同的号签的盒子中无放回地抽出6个号签。

(4)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴四川参加抗震救灾工作。

知识点三:简单随机抽样的常用方法:抽签法和随机数法

1、抽签法的定义。

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

【说明】抽签法的一般步骤:(1)编号(2)写签(将N个号码写到大小,形状相同的号签上)(3)搅拌均匀

(4)抽签(每次抽取一个号签,连续抽取n次,并记录其编号)

(5)确定样本(从总体中找出与号签上的号码对应的个体,组成样本)

例2.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程。

思考?

你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗? 十一年级数学

学案导学

助你成功

主备:王荣华

2、随机数法的定义:

利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。

怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。

第一步,先将800袋牛奶编号,可以编为000,001,…,799。

第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。

第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。思考:你能说出从0开始对总体编号的好处吗?

【说明】随机数表法的步骤:(1)将总体的个体编号。

(2)在随机数表中选择初始值。(3)选号。

(4)确定样本号。

□典题解析·掌握基本技能我最棒

例3:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?

[分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样。

例4:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?

[分析] 简单随机抽样一般采用两种方法:抽签法和随机数表法。解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径。十一年级数学

学案导学

助你成功

主备:王荣华

解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本。

小结

1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法。

2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。

3、简单随机抽样每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开业,避免在解题中出现错误。

4、为了回答生活中的很多问题,必须收集相关的数据,但从节约等方面来考虑,抽样调查是很有必要的。

□达标测评·三维设计与自主测试 十一年级数学

学案导学

助你成功

主备:王荣华

2.1.2 系统抽样(2课时)

□自学导读·领悟基础知识我能行

【学习目标】

1、知识与技能:

(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;

(3)正确理解系统抽样与简单随机抽样的关系;

2、重点与难点

正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。

【读书思考】

某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法? 【归纳小结】

知识点

一、系统抽样的定义:

一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。

【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。

(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[Nn].(3)预先制定的规则是指:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。例

1、下列抽样中不是系统抽样的是

()

A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样

B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验

C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止

D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为1

十一年级数学

学案导学

助你成功

主备:王荣华 的观众留下来座谈

点拨:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。知识点

二、系统抽样的一般步骤

(1)采用随机抽样的方法将总体中的N个个编号。(2)将整体按编号进行分段,确定分段间隔k(k∈N,L≤k).(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。

【说明】从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。

□典题解析·掌握基本技能我最棒

1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。

[分析]按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号。

解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,59组是编号为291~295的5名学生。采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293。

2、从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()

A.5,10,15,20,25 B、3,13,23,33,43 C.1,2,3,4,5 D、2,4,6,16,32 [分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B。

□达标测评·三维设计与自主测试 十一年级数学

学案导学

助你成功

主备:王荣华

2.1.3 分层抽样(2□自学导读·领悟基础知识我能行

课时)

【学习目标】

1、知识与技能:

(1)正确理解分层抽样的概念(2)掌握分层抽样的一般步骤;

(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。

2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。

3、重点与难点:

正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。

【读书思考】

假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?

【归纳小结】

知识点

一、分层抽样的定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。

【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。

(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。

知识点

二、分层抽样的步骤:

(1)分层:按某种特征将总体分成若干部分(2)求抽样比

(3)按比例确定每层抽取个体的个数

(4)各层分别随机的抽取个体,综合每层抽样,组成样本 十一年级数学

学案导学

助你成功

主备:王荣华

□典题解析·掌握基本技能我最棒

1、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高

一、高

二、高三各年级抽取的人数分别为()

A.15 ,5 ,25

B.15 ,15 ,15 C.10, 5 , 30

D 15, 10, 20

例2:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程。

解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:

(1)将3万人分为5层,其中一个乡镇为一层。

(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。

300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60 人。(3)将300人组到一起,即得到一个样本。小结

1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:

(1)、分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,面层之间的样本差异要大,且互不重叠。

(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样。

2、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法。

□达标测评·三维设计与自主测试

第二篇:随机抽样教案

一.知识点归纳

1.简单随机抽样:设一个总体的个数为N。如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。实现简单随机抽样,常用抽签法和随机数表法

(1)抽签法

制签:先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,然后将这些号签放在同一个箱子里,进行均匀搅拌;

抽签:抽签时,每次从中抽出1个号签,连续抽取n次; 成样:对应号签就得到一个容量为n的样本。

抽签法简便易行,当总体的个体数不多时,适宜采用这种方法(2)随机数表法

编号:对总体进行编号,保证位数一致;

数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。

成样:对应号签就得到一个容量为n的样本

结论:① 简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为

1N;在整个抽样过程中各个个体被抽到的概率为

nN;

② 基于此,简单随机抽样体现了抽样的客观性与公平性;

③ 简单随机抽样特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。

系统抽样的步骤可概括为:(1)将总体中的个体编号。采用随机的方式将总体中的个体编号;

(2)将整个的编号进行分段。为将整个的编号进行分段,要确定分段的间隔k.当整数时,kNnNn是;当NnNn不是整数时,通过从总体中剔除一些个体使剩下的个体数N´能被n整除,这时k;

(3)确定起始的个体编号。在第1段用简单随机抽样确定起始的个体边号l;

(4)抽取样本。按照先确定的规则(常将l加上间隔k)抽取样本:l,lk,l2k,,l(n1)k。

3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层 结论:(1)分层抽样是等概率抽样,它也是公平的。用分层抽样从个体数为N的总体中抽取一个容量为n的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于

nN;

(2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利用它获取的样本更具有代表性,在实践的应用更为广泛

二.题型归纳

题型1:简单随机抽样

1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()A.1000名运动员是总体

B.每个运动员是个体 C.抽取的100名运动员是样本

D.样本容量是100 2.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本。问:① 总体中的某一个体a在第一次抽取时被抽到的概率是多少? ② 个体a不是在第1次未被抽到,而是在第2次被抽到的概率是多少? ③ 在整个抽样过程中,个体a被抽到的概率是多少? 题型2:系统抽样

3.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为.4.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么①,②分别为..题型3:分层抽样

5.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,则三校分别抽取学生()

A.30人,30人,30人

B.30人,45人,15人 C.20人,30人,10人

D.30人,50人,10人

6.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是

A.分层抽样法,系统抽样法

B.分层抽样法,简单随机抽样法 C.系统抽样法,分层抽样法

D.简单随机抽样法,分层抽样法

7.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:

①7,34,61,88,115,142,169,196,223,250;

②5,9,100,107,111,121,180,195,200,265;

③11,38,65,92,119,146,173,200,227,254;

④30,57,84,111,138,165,192,219,246,270;

关于上述样本的下列结论中,正确的是()

A.②、③都不能为系统抽样 B.②、④都不能为分层抽样

C.①、④都可能为系统抽样 D.①、③都可能为分层抽样 8某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,则样本容量n为 9.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n=.10.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为。

第三篇:《简单随机抽样》教案

《简单随机抽样》教案

教学目标

一、知识与技能

1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果; 2.了解简单随机抽样的意义;

二、过程与方法

1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;

2.通过探究进一步了解、掌握简单随机抽样的特点;

三、情感态度和价值观

1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;

2.通过分组讨论学习,体会合作学习的兴趣;

教学重点

简单随机抽样的意义;

教学难点

获取数据时,会判断调查方式是否合适;

教学方法

引导发现法、启发猜想、讲练结合法

课前准备

教师准备 课件、多媒体; 学生准备 三角板,练习本;

课时安排

1课时

教学过程

一、导入新课

为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为

按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?

二、新课学习

方法1:调查学校田径队的30名同学

选取的样本是田径队的同学,他们暑假中体育活动多

方法2:调查每个班的男同学

只调查男同学,没调查女同学

方法3:从每班抽取1名学生进行调查

选取的样本容量太小,不能客观的反映全校学生

方法4:选取每个班级中的一半学生进行调查

选取的容量太大,需要花费较多的时间和人力

对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。

简单随机抽样的含义: 为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。

注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。如果学校人数较多,为了保证一定的样本容量,被调查的学生数一般不少于20人,取40至50人比较合适。

(1)班主任老师要求统计班里今天骑自行车上学的同学人数占全班到校上课同学的百分比。怎样得到班里骑自行车上学的同学呢? 用普查的方法,请骑车子的同学举手,数一数就行了。

(2)如果用普查的话,统计骑自行车上学的同学的人数,不计算出骑自行车上学的同学人数所占全班到校上课同学人数的百分比。

(3)哪个是总体,哪个是个体?

(4)如果采取抽样调查方式,为了保证每个个体被抽取的可能性都相同,可采用随机抽取学号的方法:将全班到校上课的学生的学号分别写在大小相同的纸条上,做成纸签,放入一个大袋子里,并把纸签摇匀。然后从袋中随机抽取5名同学的学号,统计这5人中骑自行车上学的人数,并算出这些人数占5名上学人数的百分比,并把它作为全班骑自行车上学的同学的人数所占的百分比。你感觉这种估计的精确度如何?

(5)将4中随机抽取的样本容量改为20,重复实验。

(6)将4、5中所得到的百分比与普查所得到的百分比加以比较,你发现哪此调查结果更接近总体的真实情况?

7、你还能想出其他抽样调查的方法吗?

不同的抽样方法,所得到的样本可能不同,即使对于同样的抽样方法,每次抽样得到的数据也可能是不同的,这说明抽样调查的结果具有随机性,即不确定性。一般地,在简单随机抽样中,可以有多种不同的抽样方法,但只要有足够的样本容量,就可以根据结果对总体做出估计。

想一想,用上面(5)中调查所得到的数据估计今天骑自行车上学的人数占全校同学人数的百分比合适吗?

由于不同年级骑自行车上学的同学人数可能差别较大,因此,采用分层抽样的方法比较合适。也就是先按年级进行分层,每个年级作为一层,然后按照各年级在校学生人数占全校同学人数的比值大小分配样本数。而在各个层内则采用随机抽样。

1、李大伯为了估计一袋种子中打动的粒数,先从袋中取出50粒,做上记号,然后放回袋中。将豆粒搅匀,再从袋中取出100粒,从这100粒中,找出带记号的打动。如果带记号的打动有2粒,便可估计出袋中所有打动的粒数。你知道他是怎么估计的吗?

解:第二次取出的大豆中,带记号的大豆占100粒的2%。由于经过搅匀,带记号的大豆在袋中是均匀分布的。所以,估计袋中约有大豆

50(粒)

三、结论总结

通过本节课的内容,你有哪些收获?

(1)生活中要对某一问题进行抽样调查,可根据简单的随机抽样,分层随机抽样,整群随机 抽样,等距随机调查等抽样方法进行设计调查方案。(2)抽样调查的样本要有代表性,没有偏向。

四、课堂练习

1、你认为下列的调查和判断正确吗?为什么?

(1)某校的黑板报上刊登了一篇题为《我校大部分学生不吃早餐》的报道。文章说:“本报小记者通过对课间到学校商品部买小食品的20名同学的调查,发现有16人是因为没有吃早餐而去买零食。由此推断,我校80%的学生在家不吃早餐。”

(2)在一场篮球比赛的实况转播中,解说员介绍了参加美国职业篮球比赛(NBA)的3名中国籍选手的身高。有位观众把这三个人的平均身高与美国球员的平均身高进行比较,得出了一个结论:“中国人的平均身高比美国人高。”

2、某商场8月份随机抽查七天的营业额,数据分别如下(单位:万元): 3.6,3.2,3.4,3.9,3.0,3.1,3.6 试估计该商店8月份的营业而大约是多少万元。

五、作业布置 课本P.90第1、2题

六、板书设计

4.2简单随机抽样

1.简单随机抽样的含义: 2.简单随机抽样的主要特点: 3.选取样本时应注意的问题: 例1

第四篇:“随机抽样”教学设计

一、内容和内容解析

1.内容

本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题.2.内容解析

本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法.在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的.统计有两种.一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查.但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常的大或者有的产品的质量检查是破坏性的.统计和概率的基础知识已经成为一个未来公民的必备常识.抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体.其中蕴涵了重要的统计思想样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.二、目标和目标解析

1.目标

(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;

(3)以问题链的形式深刻理解样本的代表性.2.目标解析

本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题.让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识.对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性.抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解.为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本.由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.三、教学问题诊断分析

学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想样本估计总体以及统计结果的不确定性.学生已有知识经验与本节要达成的教学目标之间还有很大的差距.主要的困难有:对样本估计总体的思想、对统计结果的不确定性产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力.在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳.根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体.四、教学支持条件分析

准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.五、教学过程设计

(一)感悟数据、引入课题

问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?

师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?

设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?

普查:为了一定的目的而对考察对象进行的全面调查称为普查.总体:所要考察对象的全体称为总体(population)

个体:组成总体的每一个考察对象称为个体(individual)

普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等.设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的.(二)操作实践、展开课题

问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?

抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(sampling investigation).样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.列举:一个著名的案例

在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(A.Landon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:

候选人

预测结果% 选举结果%

Roosevelt 43 62

Landon 57 38 问题4:你认为预测结果出错的原因是什么? 设计意图:通过案例让学生进一步体会到:在抽样调查中,样本的选择是至关重要的,样本能否代表总体,直接影响着统计结果的可靠性.问题5:如果要调查下面这几个问题,你认为应该作全面调查还是抽样调查?你们对于普查和抽样调查是怎么看的?普查一定好吗?请举例.(1)了解全班同学每周的体育锻炼时间;

(2)调查市场上某个品牌牛奶的含钙量;

(3)了解一批日光灯的使用寿命.普查

抽样调查

需要大量的人力、物力和财力

节省人力、物力和财力

不能用于带有破坏性的检查

可以用于带有破坏性的检查

在操作正确的情况下,能得到准确结果

结果与实际情况之间有误差

设计意图:通过普查和抽样调查的比较,使学生感受抽样调查的必要性和重要性.问题6:如果我们想了解晋中市高一学生的近视率,你认为该怎么做呢?

师生活动:以2人小组为单位进行讨论,说出比较可行的抽样方案.问题7:我们是否可以用晋中市高一年级学生的近视率来估计山西省高中生的近视率?为什么?

师生活动:教师继续让学生进行小组讨论,引导学生从样本容量以及样本抽取需要考虑的要素,如:学生的层次(高

一、高

二、高三),学生生活的环境(城市、县镇、农村)等.教师对学生的回答进行归纳、整理,与学生一起讨论出比较可行的抽样方案.设计意图:通过进一步的追问,加深学生对样本代表性的理解.让学生进一步的认识到:在多背景下的抽样会产生偏差,以及样本的随机性与样本大小在产生有代表性的样本中的作用,同时对后面的内容进行简单介绍.(三)总结拓展、提升思想

问题8:请你用1-2句话说说自己在本节课的收获.师生活动:引导学生从怎样学会提出统计问题?抽样调查与普查的优缺点?样本的代表性与统计推断结论之间的关系等方面进行总结和回顾.设计意图:总结回顾,巩固课堂知识、初步概括统计思想.六、目标检测设计

1.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()

A.在公园调查了1000名老年人的健康状况

B.在医院调查了1000名老年人的健康状况

C.调查了10名老年邻居的健康状

D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.设计意图:促进学生理解抽样的必要性和样本的代表性.2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是

A.总体是240 B.个体是每一个学生

C.样本是40名学生 D.样本容量是40

设计意图:回顾复习相关概念.3.为了了解全校学生的平均身高,王一调查了自己座位旁边的五位同学,把这五位同学的身高的平均值作为全校学生平均身高的估计值.(1)王一的调查是抽样调查吗?

(2)如果是抽样调查,指出调查的总体、个体、样本和样本容量;

(3)这个调查结果能较好的反映总体的情况吗?如果不能,请说明理由.设计意图:回顾抽样调查的几个基本概念,强化抽样调查中样本的代表性.

第五篇:2017上海教师资格证考试:简单随机抽样 教案

2017上海教师资格证考试:简单随机抽样 教案

简单随机抽样 教案

一、教学目标 【知识与技能】

能够准确叙述出随机抽样的概念,可以利用抽签法解决简单的实际问题。【过程与方法】

在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。【情感态度与价值观】

通过对现实生活统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

二、教学重、难点 【重点】

掌握简单随机抽样常见的抽签法.【难点】

理解简单随机抽样的科学性,以及由此推断结论的可靠性.三、教学过程

(一)创设情境,导入新课

请问下列调查是“普查”还是“抽样”调查?(1)一锅水饺的味道(2)旅客上飞机前的安全检查

(3)一批炮弹的杀伤半径(4)一批彩电的质量情况(5)美国总统的民意支持率 学生经过讨论后得出答案。引出课题。(二)师生互动,探索新知

在学生明确了抽样与普查的区别之后,为了加深对抽样概念的理解设计如下例题。例1:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么? A.在班级12名班委名单中逐个抽查5位同学进行背诵 B.在班级45名同学中逐一抽查10位同学进行背诵

先让学生分析、选择B后,师生一起归纳其特征,让学生体验B种抽样的科学性,然后教师指出这就是简单随机抽样,最后板书课题——简单随机抽样及其定义。

简单随机抽样的含义:一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样。

教师总结简单随机抽样的特点:(1)总体的个数有限;(2)样本的抽取式逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体(4)每个个体被抽到的机会都相等,抽样具有公平性

例2.在班级45名同学中逐一抽查10位同学进行背诵的抽签步骤是什么呢? 先让学生独立思考,然后分小组合作学习,各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤,教师板书上面步骤。

抽签法的一般步骤:(1)将总体的个体编号。(2)连续抽签获取样本号码。(三)知识剖析,深化新知

例3.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.提问:这道题适合用抽签法吗? 学生小组讨论总结。

抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平.(四)生生合作,巩固提高

1.判断下列抽取样本的方式是属于是否是简单随机抽样()A.从自然数集中抽取100个数做样本

B.盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后,再把它放回盒子里

C.校运会进行高一年纪男子400米接力赛,用抽签的形式决定每个班级的赛道 D.为了了解九年级一班全班同学的学习负担情况,班主任只在本班的班委中进行调查 2.抽签法中确保样本代表性的关键是()A.制签 B.搅拌均匀 C.逐一抽取 D.抽取不放回(五)总结归纳,布置作业

采用问答的形式回顾本堂课的知识内容

1.简单随机抽样及抽签法 2.抽签法的操作步骤

作业:学校需要抽查某班学生的身体健康状况,请设计两个不同的方案帮学校对学生进行抽样检测。

四、板书设计 简单随机抽样 1.定义: 特点: 2.基本方法 抽签法

来源:上海教育人才网

下载随机抽样教案word格式文档
下载随机抽样教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    第2课 简单的随机抽样

    第2课简单的随机抽样姓名:学习目的:掌握简单随机抽样的定义及能判断各种调查的方式。 一,复习: 1.调查的方式有:调查和调查。 2.下列调查方式,合适的是 A.要了解一批灯泡的使用寿命......

    “随机抽样”教学设计及反思

    “随机抽样”教学设计及反思 浙江省杭州市余杭高级中学 吴寅静 ①统计和概率的基础知识是一个未来公民的必备常识,它是中小学数学课程的重要内容. 在高中阶段,统计的学习从《必......

    必修三随机抽样教学设计

    简单随机抽样教学设计 高一数学组魏建梅 一 教材分析 教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法......

    必修三随机抽样教学设计

    必修三统计教学设计 一 教材分析 教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值......

    2012年高中精品教案集:2.1.1 简单随机抽样(本站推荐)

    §2.1.1 简单随机抽样 教学目标: 1、知识与技能: (1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤; 2、过程与方法: (1)能够从现实生活或其他学科中提出具有一定价值的......

    4.2简单的随机抽样教学设计

    备课组:二校部初一 主备人:刘福山 参备人:王继海、薛海莹 编号: 4.2简单的随机抽样 教学设计 【教学目标】 1.通过实例理解简单随机抽样的含义; 2.能用简单随机抽样的方法从总体中......

    随机抽样之简单随机抽样的教学设计

    §2.1随机抽样之简单随机抽样的教学设计 一、教材背景与内容分析 本节内容是新课标实验教材(人教版A版)必修③第二章统计的第一课时。本节课在学生掌握了算法的基本思想,同时......

    高中数学 2.1.1简单随机抽样全册精品教案 新人教A版必修3

    2.1.1 简单随机抽样 教学目标:1、知识与技能:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问......