第一篇:椭圆经典例题分类教案
椭圆经典例题分类
1.椭圆定义的应用
例
1椭圆的一个顶点为A2,0,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当A2,0为长轴端点时,a2,b1,x2y21; 椭圆的标准方程为:41(2)当A2,0为短轴端点时,b2,a4,x2y21; 椭圆的标准方程为:416说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.
1x2y21的离心率e,求k的值. 例2 已知椭圆
2k89分析:分两种情况进行讨论.
解:当椭圆的焦点在x轴上时,ak8,b9,得ck1.由e当椭圆的焦点在y轴上时,a9,bk8,得c1k.
2222221,得k4. 211k15,即k.,得29445∴满足条件的k4或k.
4由e说明:本题易出现漏解.排除错误的办法是:因为k8与9的大小关系不定,所以椭圆的焦点可能在x轴上,也可能在y轴上.故必须进行讨论.
x2y21表示椭圆,求k的取值范围. 例3
已知方程k53kk50,解:由3k0,得3k5,且k4.
k53k,∴满足条件的k的取值范围是3k5,且k4.
说明:本题易出现如下错解:由k50,得3k5,故k的取值范围是3k5.
3k0,1 出错的原因是没有注意椭圆的标准方程中ab0这个条件,当ab时,并不表示椭圆. 例4
已知x2siny2cos1(0)表示焦点在y轴上的椭圆,求的取值范围. 分析:依据已知条件确定的三角函数的大小关系.再根据三角函数的单调性,求出的取值范围.
x2y2110. 1.因为焦点在y轴上,所以解:方程可化为11cossinsincos因此sin0且tan1从而(3,). 24110,0,这是容易忽视的地方. sincos1122(2)由焦点在y轴上,知a,b.(3)求的取值范围时,应注意题目中的条件
cossin0 说明:(1)由椭圆的标准方程知例5 已知动圆P过定点A3,且在定圆B:0,x3y264的内部与其相内切,求动圆圆心P2的轨迹方程.
分析:关键是根据题意,列出点P满足的关系式.
解:如图所示,设动圆P和定圆B内切于点M.动点P到两定点,即定点A3,0和定圆圆心B3,0距离之和恰好等于定圆半径,即PAPBPMPBBM8.∴点P的轨迹是以A,B为两焦点,x2y21. 半长轴为4,半短轴长为b437的椭圆的方程:
16722说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.
2.焦半径及焦三角的应用
x2y2例1 已知椭圆方程221ab0,长轴端点为A1,A2,焦点为F1,F2,P是椭圆上一ab点,A1PA2,F1PF2.求:F1PF2的面积(用a、b、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用S1absinC求面积. 2解:如图,设Px,y,由椭圆的对称性,不妨设Px,y,由椭圆的对称性,不妨设P在第一象限.由余弦定理知:
F1F22PF1PF22PFPF2cos4c2.① 1·2222b2由椭圆定义知: PF. 1PF21PF22a
②,则②-①得
PF1cos 故SF1PF2112b2PF1PF2sin sin b2tan. 2221cosx2y21内有一点A(1,1),F1、F2分别是椭圆的左、右焦点,点P是椭圆上例2.已知椭圆95P坐标; 一点. 求PAPF1的最大值、最小值及对应的点分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.
解:
如上图,2a6,F2(2,0),AF22,设P是椭圆上任一点,由PF1PF22a6,PAPF2AF2,∴PAPF1PF1PF2AF22aAF262,等号仅当PAPF2AF2时成立,此时P、A、F2共线.
由PAPF2AF2,∴PAPF1PF1PF2AF22aAF262,等号仅当PAPF2AF2时成立,此时P、A、F2共线.
xy20,建立A、F2的直线方程xy20,解方程组2得两交点 25x9y459***P(2,2)P(2,2).、127***P点与P2重合时,PAPF2取综上所述,P点与P1重合时,PAPF1取最小值62,最大值62.
3.参数方程应用
x2y21上的点到直线xy60的距离的最小值. 例1 求椭圆3 3 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值. 解:椭圆的参数方程为距离为
x3cos,ysin.设椭圆上的点的坐标为
3cos,sin,则点到直线的d2sin63cossin63. 221时,d最小值22. 3当sin说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.
x2y21的参数方程;(2)求椭圆内接矩形的最大面积. 例
2(1)写出椭圆94分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.
x3cos(R). 解:(1)y2sin(2)设椭圆内接矩形面积为S,由对称性知,矩形的邻边分别平行于x轴和y轴,设
(3cos,2sin)为矩形在第一象限的顶点,(0),2则S43cos2sin12sin212
故椭圆内接矩形的最大面积为12.
说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.
x2y2例3 椭圆221(ab0)与x轴正向交于点A,若这个椭圆上总存在点P,使abOPAP(O为坐标原点),求其离心率e的取值范围.
分析:∵O、A为定点,P为动点,可以P点坐标作为参数,把OPAP,转化为P点坐标的一个等量关系,再利用坐标的范围建立关于a、b、c的一个不等式,转化为关于e的不等式.为减少参数,易考虑运用椭圆参数方程.
解:设椭圆的参数方程是xacos(ab0),ybsin则椭圆上的点P(acos,bsin),A(a,0),∵OPAP,∴bsinbsin1,acosacosa 4
b2即(ab)cosacosb0,解得cos1或cos2,ab222222b22221bac∵1cos1 ∴cos1(舍去),12,又 2aba222∴022,∴e,又0e1,∴e1.
c22说明:若已知椭圆离心率范围(2,1),求证在椭圆上总存在点P使OPAP.如何证明? 24.相交情况下--弦长公式的应用
例1 已知椭圆4x2y21及直线yxm.(1)当m为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为
210,求直线的方程. 52解:(1)把直线方程yxm代入椭圆方程4x2y21得
4x2xm1,即5x2mxm10.2m45m2116m2200,解得22255. m222mm21(2)设直线与椭圆的两个交点的横坐标为x1,x2,由(1)得x1x2,x1x2.
55m212102m2根据弦长公式得
:11.解得m0.方程为yx. 4555
说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.
这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程. 例2 已知长轴为12,短轴长为6,焦点在x轴上的椭圆,过它对的左焦点F1作倾斜解为交椭圆于A,B两点,求弦AB的长. 分析:可以利用弦长公式AB1kx1x222的直线3(1k2)[(x1x2)24x1x2]求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.
解:(法1)利用直线与椭圆相交的弦长公式求解.
AB1k2x1x2(1k2)[(x1x2)24x1x2].因为a6,b3,所以c33.因为焦点在x轴上,x2y21,左焦点F(33,0),从而直线方程为y3x9. 所以椭圆方程为369由直线方程与椭圆方程联立得:13x723x3680.设x1,x2为方程两根,所以
2x1x272313,x1x236813,k3,从而AB1k2x1x2(1k2)[(x1x2)24x1x2]
(法2)利用椭圆的定义及余弦定理求解.
48. 13x2y21,设AF由题意可知椭圆方程为 1m,BF212m,BF212n.1n,则AF369在AF1F2中,AF2AF1F1F22AF1F1F2c2223os,即
1(12m)2m23632m63;
2所以m4866ABmnn.同理在BF中,用余弦定理得,所以. F12134343
(法3)利用焦半径求解.
先根据直线与椭圆联立的方程13x723x3680求出方程的两根x1,x2,它们分别是A,2B的横坐标.
再根据焦半径AF1aex1,BF1aex2,从而求出ABAF1BF1
5.相交情况下—点差法的应用
例1 已知中心在原点,焦点在x轴上的椭圆与直线xy10交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.
x22解:由题意,设椭圆方程为2y1,axy10222由x2,得1ax2ax0,22y1a
1x1x21a22,yM1xM∴xM,1a22akOMyM112,∴a24,xMa4x2y21为所求. ∴4说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.
x211y21,求过点P,且被P平分的弦所在的直线方程. 例2 已知椭圆222分析一:已知一点求直线,关键是求斜率,故设斜率为k,利用条件求k. 解法一:设所求直线的斜率为k,则直线方程为y11kx.代入椭圆方程,并整理得 2212kx2k222132kxk2k0.
222k22k由韦达定理得x1x2.
12k2∵P是弦中点,∴x1x21.故得k所以所求直线方程为2x4y30.
分析二:设弦两端坐标为x1,y1、x2,y2,列关于x1、x2、y1、y2的方程组,从而求斜率:
1. 2y1y2.
x1x2解法二:设过P,的直线与椭圆交于Ax1,y1、Bx2,y2,则由题意得 1122x122y11,22x22y21,2x1x21,y1y21.①② ③④2x12x22y12y20.
⑤ ①-②得2 7 将③、④代入⑤得
1y1y21,即直线的斜率为.
2x1x22所求直线方程为2x4y30.
说明:
(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.
(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.
x211y21,例3 已知椭圆(1)求过点P,且被P平分的弦所在直线的方程; 222(2)求斜率为2的平行弦的中点轨迹方程;
(3)过A2,1引椭圆的割线,求截得的弦的中点的轨迹方程;
(4)椭圆上有两点P、Q,O为原点,且有直线OP、OQ斜率满足kOPkOQ求线段PQ中点M的轨迹方程.
分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.
解:设弦两端点分别为Mx1,y1,Nx2,y2,线段MN的中点Rx,y,则
1,2x122y122,22x22y22,x1x22x,yy2y,12①②③④
①-②得x1x2x1x22y1y2y1y20.
由题意知x1x2,则上式两端同除以x1x2,有
x1x22y1y2y1y2x1x2将③④代入得x2y0,y1y20.⑤
x1x2
(1)将x11yy21,故所求直线方程为:
2x4y30. ⑥,y代入⑤,得122x1x22222将⑥代入椭圆方程x2y2得6y6y110,36460符合题意,442x4y30为所求.
(2)将y1y22代入⑤得所求轨迹方程为:
x4y0.(椭圆内部分)
x1x28(3)将y1y2y1代入⑤得所求轨迹方程为:
x22y22x2y0.(椭圆内部分)x1x2x22x12x22y12y22,⑦,将③④平方并整理得(4)由①+②得
:
222x12x24x22x1x2,⑧,y12y24y22y1y2,⑨
4x22x1x24y22y1y22,⑩ 将⑧⑨代入⑦得:
4再将y1y211x1x2代入⑩式得:
2x2x1x24y22x1x22,即
22y2x1. 122此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.
x2y21,试确定m的取值范围,使得对于直线l:y4xm,椭圆C上有例4 已知椭圆C:43不同的两点关于该直线对称.
分析:若设椭圆上A,B两点关于直线l对称,则已知条件等价于:(1)直线ABl;(2)弦AB的中点M在l上.
利用上述条件建立m的不等式即可求得m的取值范围. 解:(法1)设椭圆上A(x1,y1),B(x2,y2)两点关于直线l对称,直线AB与l交于M(x0,y0)点. yxn,14∵l的斜率kl4,∴设直线AB的方程为yxn.由方程组消去y得 224xy1,34113x28nx16n2480
①。∴x1x28nxx24n.于是x01,13213112ny0x0n,4134n12n4n,).∵点M在直线y4xm上,∴n4m.解得即点M的坐标为(13131313nm. ②
4将式②代入式①得13x26mx169m480
③
∵A,B是椭圆上的两点,∴(26m)413(169m48)0.解得
2222213213m. 13139(法2)同解法1得出n13413m,∴x0(m)m,4134113113y0x0m(m)m3m,即M点坐标为(m,3m).
4444(m)2(3m)21.解得∵A,B为椭圆上的两点,∴M点在椭圆的内部,∴
43213213. m1313(法3)设A(x1,y1),B(x2,y2)是椭圆上关于l对称的两点,直线AB与l的交点M的坐标为(x0,y0).
x1yxy∵A,B在椭圆上,∴11,221.两式相减得
434322223(x1x2)(x1x2)4(y1y2)(y1y2)0,即32x0(x1x2)42y0(y1y2)0.∴
3xy1y20(x1x2).
x1x24y0又∵直线ABl,∴kABkl1,∴3x041,即y03x0 ①。4y0又M点在直线l上,∴y04x0m
②。由①,②得M点的坐标为(m,3m).以下同解法2.说明:涉及椭圆上两点A,B关于直线l恒对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:
(1)利用直线AB与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式0,建立参数方程.
xy(2)利用弦AB的中点M(x0,y0)在椭圆内部,满足001,将x0,y0利用参数表示,建立
ab参数不等式.
22x2y21所截得的线段的中点,求直线l的方程. 例5 已知P(4,2)是直线l被椭圆
369
分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去y(或x),得到关于x(或y)的一元二次方程,再由根与系数的关系,直接求出x1x2,x1x2(或y1y2,y1y2)的值代入计算即得.
并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.
解:方法一:设所求直线方程为y2k(x4).代入椭圆方程,整理得
(4k21)x28k(4k2)x4(4k2)2360 ①
设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x1、x2是①的两根,∴x1x2∵P(4,2)为AB中点,∴48k(4k2)
4k21x1x24k(4k2)1k,.∴所求直线方程为x2y80. 224k12方法二:设直线与椭圆交点A(x1,y1),B(x2,y2).∵P(4,2)为AB中点,∴x1x28,y1y24.
B在椭圆上,又∵A,∴x14y136,x24y236两式相减得(x1x2)4(y1y2)0,即(x1x2)(x1x2)4(y1y2)(y1y2)0.∴22222222y1y2(x1x2)1.∴直线方程为
x1x24(y1y2)2x2y80.
方法三:设所求直线与椭圆的一个交点为A(x,y),另一个交点B(8x,4y).
∵A、B在椭圆上,∴x4y36
①。
(8x)4(4y)36
② 从而A,B在方程①-②的图形x2y80上,而过A、B的直线只有一条,∴直线方程为2222x2y80.
说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法.
若已知焦点是(33,0)、(33,0)的椭圆截直线x2y80所得弦中点的横坐标是4,则如何求椭圆方程?
第二篇:“椭圆世界”教案
第二章第二节“椭圆世界”教案
讲课人:杨 薇 授课班级:三年级 上课时间:2007.11.30 课 型:新授课 运用教具:计算机
计划课时:1课时 教学方法:讲解法、演示法、练习法、任务驱动法
教学目的:1.通过学习学生可以熟练掌握椭圆工具的使用方法;
2.初步了解多边形工具的使用方法; 3.能够与其他工具配合进行创作;
教学重点:画图软件部分工具的应用和操作。如:涂色工具、刷子、直线工具。教学难点:多边形工具的具体操作。教学过程:
一、回顾旧知(5分钟)1.正常开关机的顺序(先开显示器,再开主机)
学生共分为四组,每两组之间相互观察开机的顺序是否有错,错的及时纠正。2.在开机的过程中提问:谁记得如何打开画图?
生思考,并举手回答,老师作出评价。(开始——程序——附件——画图)3.观察到大多数的计算机已经打开,要求学生演示打开画图的过程,加深影象。4.复习上一节课的内容,引入本节主题。
二、导入(2分钟)
展示“图1”,要求学生观察,并回答问题: 1.图上画的是什么?(生回答:小鸡)
2.大家仔细看看这只小鸡是由那些图形组成的呢?(生回答:圆形,三角形,直线)
3.那其中最多的图形是什么?(生回答:圆形)
4.在我们的日常生活中还有什么是圆形的?(生回答:碗、盘子、水杯、太阳、车轮、饼干„„)
大家说的都很好,那么你们想学用计算机画小鸡吗?(生:想)
三、新授(15分钟)
好,现在我们就一起来学习利用椭圆工具画出小鸡。
1.老师语言描述,学生跟随动手,老师从旁指导个别基础较差的学生(1)打开画图程序,看谁作的又快又好;(2)在工具栏中选取“椭圆工具”选项;(3)按住鼠标左键,画一个圆。
好了,我看到大家都已经画出一个很好的圆了,下面就请大家自己先动手画一 画小鸡。
(4)时间到了,大家的小鸡画的怎么样啊?(生:不好)我看到有些同学已经画出来了,但是有些同学还没有,别急,现在仔细听老师教你们,到时候你们也一定会画的很好的。2.实例讲解,边讲解边画范图
(1)画鸡身和鸡头(椭圆的画法)
讲解演示:单击椭圆工具,移动十字光标到绘图区,按住鼠标左键拖动,图形就会朝鼠标器移动方向延伸,放开鼠标左键则完成鸡身的绘画。按此方法,可再画出小鸡头。
(2)画鸡脚和鸡嘴(直线的画法)
讲解演示:单击直线工具,移动十字形光标到小鸡身子的下面,按住鼠标左键拖动,直线就会朝鼠标的移动方向改变长度和位置,放开鼠标左键则完成直线绘制。按此方法,可画出小鸡的脚和嘴。(3)画鸡翅(曲线的画法)
讲解演示:单击曲线工具,移动十字形光标到小鸡身子的里面,先大概确定一下要画的曲线的位置,在曲线的一个端点单击一下左键,然后继续按住鼠标左键移动到另一个端点,放开鼠标左键,则在两个端点之间出现一直线。再移动光标到所绘线条的中间位置,按下鼠标左键慢慢向下拖动,这时曲线弧度就会随鼠标的移动方向而改变,满意时放开鼠标左键,并再次单击鼠标左键,完成曲线绘制。
(4)画鸡点“睛”(刷子的用法)
讲解演示:单击刷子工具,移动十字形光标到鸡头的里面,选择适当位置单击一个鼠标左键即可。按此方法,可画出小鸡的眼睛。(5)给鸡嘴上色(着色滚筒的用法)
讲解演示:着色滚筒主要是在一个封闭的区域内着色。单击色滚筒工具,移动光标到鸡嘴的位置,单击鼠标左键既可。3.现在大家应该都可以画出来了吧?那么接下来大家就继续动手画吧,已经画好的同学可以参照老师的这副画画出一副完整的图画来(展示“图2”)。4.观察和指导学生练习。(10分钟)5.解决学生在练习中反馈的问题(3分钟)(1)画图窗口的最大化(点击最大化按钮);(2)颜色的填充(没有形成一个封闭的图形)。6.与学生一起鉴赏好的作品。(10)
四、版书设计
第二章第二节画小鸡的操作步骤: A、画鸡身和鸡头(椭圆)B、画鸡脚和鸡嘴(直线)C、画鸡翅(曲线)D、画鸡点“睛”(刷子)E、给鸡嘴着色(着色滚筒)
椭圆世界
第三篇:高中物理机械能守恒定律典型分类例题
一、单个物体的机械能守恒
判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。
(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。
所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。
(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
(2)固定的光滑斜面类
在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
(3)固定的光滑圆弧类
在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
(4)悬点固定的摆动类
和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。
作题方法:
一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。
注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。习题:
1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长LaLbLc,则悬线摆至竖直位置时,细线中张力大小的关系是()
ATcTbTaBTaTbTcCTbTcTaDTa=Tb=Tc4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:
(1)小球滑至圆环顶点时对环的压力;
(2)小球至少要从多高处静止滑下才能越过圆环最高点;
(3)小球从h0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。
二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面
(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。
(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。
系统内物体的重力所做的功不会改变系统的机械能
系统间的相互作用力分为三类:
1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等
2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。
3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。
在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。但在第三种情况下,由于其它形式的能参
1与了机械能的转换,系统的机械能就不再守恒了。
归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类
(3)在水平面上可以自由移动的光滑圆弧类。(4)悬点在水平面上可以自由移动的摆动类。
(1)轻绳连体类
这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
[例]:如图,光滑斜面的倾角为,竖直的光滑细杆到定滑轮的距离为a,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,求m下降b时两物体的速度大小?
(2)轻杆连体类
这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改
变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
例:如图,质量均为m的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L、2L,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小
(3)在水平面上可以自由移动的光滑圆弧类。
光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明
例:四分之一圆弧轨道的半径为R,质量为M,放在光滑的水平地面上,一质量为m的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?
(4)悬点在水平面上可以自由移动的摆动类。
悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明
例:质量为M的小车放在光滑的天轨上,长为L的轻绳一端系在小车上另一端拴一质量为m的金属球,将小球拉开至轻绳处于水平状态由静止释放。求(1)小球摆动到最低点时两者的速度?(2)此时小球受细绳的拉力是多少?
习题
1.如图5-3-15所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经
过a点,乙小球竖直下落经过b点,a、b两点在同一水平面上,不计空气阻力,下列说法中正确的是()
A.甲小球在a点的速率等于乙小球在b点的速率
B.甲小球到达a点的时间等于乙小球到达b点的时间
C.甲小球在a点的机械能等于乙小球在b点的机械能(相对同一个零势能参考面)
D.甲小球在a点时重力的功率等于乙小球在b点时重力的功率
2. 一根质量为M的链条一半放在光滑的水平桌面上,另一半挂在桌边,如图5-3-
16(a)所示.将链条由静止释放,链条刚离开桌面时的速度为v1.若在链条两端各系一个质量均为m的小球,把链条一半和一个小球放在光滑的水平桌面上,另一半和另一个小球挂在桌边,如图5-3-16(b)所示.再次
将链条由静止释放,链条刚离开桌面时的速度为v2,下列判断中正确的是()
A.若M=2m,则v1=v2B.若M>2m,则v1<v
2C.若M<2m,则v1>v2D.不论M和m大小关系如何,均有v1>v2
5.如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=
0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m=2 kg的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:
(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小;(2)满足设计要求的木箱质量.
如图5-3-20所示,一个质量为m的小铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨
道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为()
1113A.mgRB.C.D.842
42.如图5-3-21所示,斜面置于光滑水平地面上,其光滑斜面上有一物体由静止下滑,在物体下滑过程中,下列说
法正确的是()
A.物体的重力势能减少,动能增加B.斜面的机械能不变
C.斜面对物体的作用力垂直于接触面,不对物体做功D.物体和斜面组成的系统机械能守恒
4.如图5-3-23所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为()
A.hB.1.5hC.2hD.
5.如图5-3-24所示,在动摩擦因数为0.2的水平面上有一质量为3 kg的物体被一个劲度系数为120 N/m的压缩轻质弹
簧突然弹开,物体离开弹簧后在水平面上继续滑行了1.3 m才停下来,下列说法正确的是(g取10 m/s2)()
A.物体开始运动时弹簧的弹性势能Ep=7.8 JB.物体的最大动能为7.8 J
C.当弹簧恢复原长时物体的速度最大D.当物体速度最大时弹簧的压缩量为x=
0.05 m
8.如图5-3-27所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点.下列说法中正
确的是()
A.小球从A出发到返回A的过程中,位移为零,合外力做功为零
B.小球从A到C过程与从C到B过程,减少的动能相等
C.小球从A到B过程与从B到A过程,损失的机械能相等
10.如图5-3-29所示,半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v0,若v0大小不同,则小球能够上升到的最大高度(距离底部)也不同.下列说法中正确的是()
RRA.如果v0=gR,则小球能够上升的最大高度为B.如果v0=2gR,则小球能够上升的最大高度为2
2C.如果v0=3gR,则小球能够上升的最大高度为
11.如图5-3-30所示,AB为半径R=0.8 m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量
M=3 kg,车长L=2.06 m,车上表面距地面的高度h=0.2 m.现有一质量m=1 kg的滑块,由轨道顶端无初速释放,滑到B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s时,车被地面装置锁定.(g=10 m/s2)试求:
(1)滑块到达B端时,轨道对它支持力的大小;(2)车被锁定时,车右端距轨道B端的距离;
(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;
(4)滑块落地点离车左端的水平距离.
2.如图7-7-11所示,质量为2m和m可看做质点的小球A、B,用不计质量的不可伸长的细线相连,跨在固定的半径为R的光滑圆柱两侧,开始时A球和B球
与圆柱轴心等高,然后释放A、B两球,则B球到达最高点时的速率是多少?
3RD.如果v0=5gR,则小球能够上升的最大高度为2R
29.如图所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球,支架悬挂在O点,可绕过O点并与支架所在平面相垂直的固定轴转动,开始时OB与地面相垂直,放手后开始运动,在不计任何阻力的情况下,下列说法正确的是()
A.A球到达最低点时速度为零
B.A球机械能减少量等于B球机械能增加量。
C.B球向左摆动所能达到的最高位置应高于A球开始运动时的高度。
D.当支架从左向右往回摆动时,A球一定能回到起始高度
14.如图所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物
体A、B。开始时物体A、B和轻弹簧竖立静止在水平地面上,现要在上面物体A上加一竖直向上的力F,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2,求:此过程中外力F所做的功。
第四篇:椭圆及其标准方程 教案.doc
学习资 料
教学目标
1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;
2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;
3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;
5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.
教学建议 教材分析 1. 知识结构
2.重点难点分析
重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.
椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.
(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.
另外要注意到定义中对“常数”的限定即常数要大于 现两种特殊情况,即:“当常数等于
.这样规定是为了避免出
时无轨
时轨迹是一条线段;当常数小于
以上资料均从网络收集而来
学习资 料
迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.
(2)根据椭圆的定义求标准方程,应注意下面几点:
①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.
②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.
③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.
④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程
“而没有证明,”方程 的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.
(3)两种标准方程的椭圆异同点
中心在原点、焦点分别在 轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.
椭圆的焦点在 轴上 标准方程中 项的分母较大;
椭圆的焦点在 轴上 标准方程中 项的分母较大.
以上资料均从网络收集而来
学习资 料
另外,形如 中,只要,同号,就是椭圆方程,它可以化为
.
(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆. 教法建议
(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.
为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。
例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.
(2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历
为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.
(3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。
教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。
教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在以上资料均从网络收集而来
学习资 料
黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。
(4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质
在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。
(5)注意椭圆的定义与椭圆的标准方程的联系
在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.
(6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.
推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)
(7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.
(8)在学习新知识的基础上要巩固旧知识
椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没
以上资料均从网络收集而来
学习资 料
有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.
(9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。
以上资料均从网络收集而来
第五篇:椭圆及其标准方程教案
椭圆及其标准方程教案
教学目标:
(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程,会由标准方程求出椭圆的交点和焦距;
(二)能力目标:通过对椭圆概念的引入和标准方程的推导,培养学生分析、探索的能力,增强学生运用代数法解决几何问题的能力;
(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。
教学重点:椭圆的定义和椭圆的标准方程的推导。教学难点:椭圆标准方程的推导。
教学方法:探究式教学法(教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。)
教具准备:自制教具(圆柱体、细绳)。
教学过程:(一)启发诱导,推陈出新
1、复习旧知识:拉直一根细线,一端固定,作一个圆,由此回忆圆的定义(到一点的距离等于定长的点的轨迹),圆的标准方程;
2、提出新问题:到两点的距离等于定长的点是什么轨迹呢? 尝试作图;
3、创设情境,引出课题:“椭圆及其标准方程”。(二)小组合作,形成概念
下面请同学们思考下面的问题:
1、在作图时,视笔尖为动点,线的两个固定的端点为定点,动点到两定点距离之和符合什么条件?其轨迹如何?
2、改变两端点之间的距离,使其与绳长相等,画出的图形还是椭圆吗?
3、当绳长小于两图钉之间的距离时,还能画出图形吗?
学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆、线段、不存在。
归纳出椭圆的定义:平面内到两个定点F1、F2的距离之和等于定长(大于F1F2)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
(三)椭圆标准方程的推导
1、建立适当坐标系(让学生根据自己的经验来确定)
原则:尽可能使方程的形式简单、运算简单;主要应使曲线对于坐标轴具有较多的对称性。
2、标准方程推导过程如下:
①建立直角坐标系:以直线F1F2为x轴,线段F1F2的垂直平分线为y轴,建
立如图所示的坐标系;
②确定点的坐标:设F1F22c,则F1c,0,F2c,0,设Px,y是椭圆上的任意一点;
③设定长为2a,由条件PF1PF22a得
xc2y2xc2y22a;
x2y2④化简:得到椭圆方程为221。
ab(通过学生自己动手推导方程是学生构建知识的一个过程。)
3、归纳方程特点,巩固上述知识。
4、延伸:①焦点在y轴上:F10,c,F20,c
y2x2②方程:221
ab③a,b,c的关系:b2a2c2,ab0,ac0
(四)例题讲解
例1:平面内两个定点的距离是8,写出到这两个定点距离的和是10的动点的轨迹方程。
解:这个轨迹是椭圆,两个定点是焦点,用F1、F2表示。
取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴。2a10,2c8
a5,c4,b2a2c252429,即b3
x2y2x2y2这个椭圆的标准方程是221,即1
25953(例1是巩固椭圆的定义及标准方程)
x2y2x2y21与椭圆c2:1的焦点。
例2:分别求椭圆c1:433解:43
椭圆c1的焦点在x轴上,椭圆c2的焦点在y 轴上
a24,b23,ca2b21
1,椭圆c1的两个焦点分别是0和1,0 0,是1和0,1。
椭圆c2的两个焦点分别(例2会由椭圆的标准方程求出椭圆的焦点坐标和焦距)
(五)课堂练习
课本P61 A 1(2)(3)2(3)(4)(五)课堂小结
1、椭圆定义
2、焦点分别在x轴和y轴上的椭圆的标准方程(结合图形,表述焦点坐标,焦距,系数的关系等)
3、考虑一下将椭圆平移到坐标轴任意位置时的坐标,留给同学们课后思考
4、布置作业:课本P61 A 1(1)(4)2(1)(2)