专题08 探究归纳问题(精练)-中考数学高频考点突破(解析版)

2021-03-18 12:53:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《专题08 探究归纳问题(精练)-中考数学高频考点突破(解析版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《专题08 探究归纳问题(精练)-中考数学高频考点突破(解析版)》。

一、选择题(10×3=30分)

1.(湖北荆门·3分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()

A.△AFD≌△DCE

B.AF=AD

C.AB=AF

D.BE=AD﹣DF

【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.

(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;

(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;

故选(B)

2.(2016·山东省滨州市·3分)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:

①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()

A.②④⑤⑥

B.①③⑤⑥

C.②③④⑥

D.①③④⑤

【解答】解:①、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,∴∠AOC≠∠AEC,③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,故选D。学科*网

3.(2017山东泰安)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()

A.18

B.

C.

D.

【考点】S9:相似三角形的判定与性质;KQ:勾股定理;LE:正方形的性质.

【分析】先根据题意得出△ABM∽△MCG,故可得出CG的长,再求出DG的长,根据△MCG∽△EDG即可得出结论.

【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.

∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.

∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.

∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.

故选B.

4.(2017四川南充)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是

().A.①②③

B.①③

C.②③

D.①②

【解答】解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,5.(2017广西)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()

A.4

B.3

C.2

D.1

【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.

【解答】解:如图连接PC.

在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).

故选B.

6.(2017湖北随州)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:

①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()

A.1个

B.2个

C.3个

D.4个

【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LB:矩形的性质;MA:三角形的外接圆与外心;R2:旋转的性质.

【解答】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,又∵AB<BC,∴AM=DE+BM不成立,故②错误;

∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;

∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,=<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.

综上所述,正确的结论有2个,故选:B.

7.(2017贵州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()

A.60°

B.67.5°

C.75°

D.54°

【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.

【解答】解:如图,连接DF、BF.

∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.

故选A.学科*网

8.(2018·湖北省孝感·3分)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()

A.5

B.4

C.3

D.2

【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;

∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;

记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;

∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;

9.(2017齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是().【出处:21教育名师】

A.10cm,4cm,2cm

B.20cm,2cm,4cm

C.10cm,2cm,4cm

D.10cm,4cm,4cm

【考点】PC:图形的剪拼.

【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.

【解答】解:如图:,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC==2cm,故答案为:10cm,2cm,4cm.故选C

10.(2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为()

A.2

B.3

C.4

D.5

【考点】四边形综合题.

【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.

∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.

∵∠AOB=90°,∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.

故⑤正确.

∵四边形AEFG是菱形,∴AB∥GF,AB=GF.

∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.

∵S△OGF=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.

∴其中正确结论的序号是:①④⑤.

故选B.

二、填空题(6×4=24分).11.(2018·辽宁省盘锦市)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为 24 .

【解答】解:从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24.

故答案为:24.

12.(2018·湖北咸宁·3分)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:

①AD=CD;

②∠ACD的大小随着α的变化而变化;

③当α=30°时,四边形OADC为菱形;

④△ACD面积的最大值为a2;

其中正确的是_____.(把你认为正确结论的序号都填上).

【答案】①③④

④先证明△ACD是等边三角形,当AC最大时,△ACD的面积最大,当AC为直径时最大,根据面积公式计算后可作判断.

③当α=30°时,即∠AOD=∠COD=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=OA=AC,由①得:CD=AD,∴∠CAD=∠ACD=∠CDA=60°,∴△ACD是等边三角形,∴AC=AD=CD,∴OC=OA=AD=CD,∴四边形OADC为菱形,故③正确;

④∵CD=AD,∠ACD=60°,∴△ACD是等边三角形,当AC最大时,△ACD的面积最大,∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°,∴△ACD面积的最大值是:AC2=,故④正确,所以本题结论正确的有:①③④,故答案为:①③④.学科*网

13.(2018·浙江宁波·4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为

.【考点】菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质.【分析】延长DM交CB的延长线于点H.首先证明DE=EH,设BE=x,利用勾股定理构建方程求出x即可解决问题.

【解答】解:延长DM交CB的延长线于点H.

∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°

∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.

14.(2018·山东潍坊·3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为

【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.

【解答】解:如图,连接AM,15.(2018·浙江宁波·4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为

【考点】切线的性质、正方形的性质、勾股定理

【分析】分两种情形分别求解:如图1中,当⊙P与直线CD相切时;如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形;

【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.

∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.

综上所述,BP的长为3或4.

16.(2018·湖北省孝感·3分)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为

【解答】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=﹣x﹣1,∴DG=BM,∴1﹣=﹣1﹣x﹣,x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE•BM=××4=7;

故答案为:7.

三、解答题(共46分).17.(2018·辽宁省阜新市)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.

(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;

(2)点M,N分别在直线AD,AC上,且∠BMN=90°.

①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;

②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.

②在Rt△ABD中,AD=BD=AB=.

∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°.在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.学科*网

18.(2018年四川省南充市)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.

(1)求证:PC是⊙O的切线.

(2)求tan∠CAB的值.

【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.

【解答】解:(1)如图,连接OC、BC

∵⊙O的半径为3,PB=2

∴OC=OB=3,OP=OB+PB=5

∵PC=4

∴OC2+PC2=OP2

∴△OCP是直角三角形,∴OC⊥PC

∴PC是⊙O的切线.

19.(2018·浙江省台州·12分)如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.

(1)如图1,求证:∠CAE=∠CBD;

(2)如图2,F是BD的中点,求证:AE⊥CF;

(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.

【分析】(1)直接判断出△ACE≌△BCD即可得出结论;

(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;

(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.

【解答】解:(1)在△ACE和△BCD中,∴△ACE≌△BCD,∴∠CAE=∠CBD;

(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.

20.(2018·辽宁省沈阳市)(10.00分)如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2、y=x相交于点P.

(1)求直线l1的表达式和点P的坐标;

(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x

轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x

轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).

①矩形ABCD在移动过程中,B.C.D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;

②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.

【解答】解:(1)设直线l1的表达式为y=kx+b

∵直线l1过点F(0,10),E(20,0)

(2)①如图,当点D在直线上l2时

∵AD=9

∴点D与点A的横坐标之差为9

∴将直线l1与直线l2

交解析式变为

x=20﹣2y,x=y

∴y﹣(20﹣2y)=9

解得

y=

则点A的坐标为:(,)

则AF=

∵点A速度为每秒个单位

∴t=

如图,当点B在l2

直线上时

②如图,设直线AB交l2

于点H

设点A横坐标为a,则点D横坐标为a+9

由①中方法可知:MN=

此时点P到MN距离为:

a+9﹣8=a+1

∵△PMN的面积等于18

解得

a1=,a2=﹣(舍去)

∴AF=6﹣

则此时t为

当t=时,△PMN的面积等于18。学科*网

下载专题08 探究归纳问题(精练)-中考数学高频考点突破(解析版)word格式文档
下载专题08 探究归纳问题(精练)-中考数学高频考点突破(解析版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐