专题08 探究归纳问题(精练)-中考数学高频考点突破(原卷版)

2021-03-18 12:45:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《专题08 探究归纳问题(精练)-中考数学高频考点突破(原卷版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《专题08 探究归纳问题(精练)-中考数学高频考点突破(原卷版)》。

一、选择题(10×3=30分)

1.(湖北荆门·3分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()

A.△AFD≌△DCE

B.AF=AD

C.AB=AF

D.BE=AD﹣DF

2.(2016·山东省滨州市·3分)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:

①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()

A.②④⑤⑥

B.①③⑤⑥

C.②③④⑥

D.①③④⑤

3.(2017山东泰安)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()

A.18

B.

C.

D.

4.(2017四川南充)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是

().A.①②③

B.①③

C.②③

D.①②

5.(2017广西)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()

A.4

B.3

C.2

D.1

6.(2017湖北随州)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:

①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()

A.1个

B.2个

C.3个

D.4个

7.(2017贵州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()

A.60°

B.67.5°

C.75°

D.54°

8.(2018·湖北省孝感·3分)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()

A.5

B.4

C.3

D.2

9.(2017齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是().【出处:21教育名师】

A.10cm,4cm,2cm

B.20cm,2cm,4cm

C.10cm,2cm,4cm

D.10cm,4cm,4cm

10.(2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为()

A.2

B.3

C.4

D.5

二、填空题(6×4=24分).11.(2018·辽宁省盘锦市)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为 24 .

【解答】解:从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24.

故答案为:24.

12.(2018·湖北咸宁·3分)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:

①AD=CD;

②∠ACD的大小随着α的变化而变化;

③当α=30°时,四边形OADC为菱形;

④△ACD面积的最大值为a2;

其中正确的是_____.(把你认为正确结论的序号都填上).

13.(2018·浙江宁波·4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为

.14.(2018·山东潍坊·3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为

15.(2018·浙江宁波·4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为

16.(2018·湖北省孝感·3分)如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为

三、解答题(共46分).17.(2018·辽宁省阜新市)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.

(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;

(2)点M,N分别在直线AD,AC上,且∠BMN=90°.

①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;

②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.

18.(2018年四川省南充市)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.

(1)求证:PC是⊙O的切线.

(2)求tan∠CAB的值.

19.(2018·浙江省台州·12分)如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.

(1)如图1,求证:∠CAE=∠CBD;

(2)如图2,F是BD的中点,求证:AE⊥CF;

(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.

20.(2018·辽宁省沈阳市)(10.00分)如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2、y=x相交于点P.

(1)求直线l1的表达式和点P的坐标;

(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x

轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x

轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).

①矩形ABCD在移动过程中,B.C.D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;

②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.

下载专题08 探究归纳问题(精练)-中考数学高频考点突破(原卷版)word格式文档
下载专题08 探究归纳问题(精练)-中考数学高频考点突破(原卷版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐