第一篇:培养学生的几何直观能力发展的策略
培养学生的几何直观能力发展的策略
几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。几何直观能力主要包括空间想像力、直观洞察能力、用图形语言来思考问题能力。用最通俗的话说几何直观,就是看图想事,看图说理,就是几何直观,说的挺形象。该如何从学习图形中获得最大的好处,这是作为数学工作者应该想的一件事情。如何帮助学生建立几何直观,下面结合我自己的教学实践,谈谈本人在教授这方面发展的策略。
一、加强空间观念的培养
我以为一个学生空间观念如何直接影响几何直观能力的高低,很简单地理由,空间观念不强(想象不出具体实物对应的图形)怎么用几何图形去解决实际问题呢?我相信,一个有着很强的空间观念的学生几何直观能力不会差到哪里的。
举个例子,我这样教学“正方体表面展开图”一课:
(一)操作一:正方体表面展开图可能是怎样的?
每人准备一个正方体的盒子,先想象把正方体六个面展开后,这六个面的位置可以怎样连?把图画下来;
动手剪一剪,看看剪下来的表面展开图和你画的是不是一样的?把展开图画下来。同时思考:你事先画下的(想象的)表面展开图和你剪出来的并不一样,那么是不是就说明围不成正方体呢?
引导学生接着操作,把图形剪下来,再折一折拼一拼,看看能不能围成正方体。(学生会发现,有的能,有的不能)
第一操作总结:看来正方体表面展开图有很多种情况啊。把你们一开始画的表面展开图贴到黑板上,根据学生所画所贴图情况,适当补充一些老师需要的情况。
(二)操作二:正方体的表面展开图有什么规律? 引导学生猜测哪些是能拼成正方体的,哪些不能?在猜测的基础上再一一检验(通过折一折的方式)
最后引导学生把能折成正方体的表面展开图分一分类。总结出一般的规律.整个过程有操作、有想象、有找规律(实质是抽象),充分培养了学生的直观几何能力。
二、要充分的发挥图形给带来的好处。
我们都知道“兴趣是最好的老师”,“几何直观”作为一种能力,要想让学生认同它、进而学习它,首要一点就是要引起学生的注意、让学生对此感兴趣。怎样才能做到这一点呢?作为教师要不失时机地向学生展示利用“几何直观”解决实际问题的优势。
举个例子:计算1+3+5+7+9+11+……+2009+2011+2013=?
通常的做法是运用“等差数列求和公式”,既“和=(首项+末项)×项数÷2”,要求和首先求项数,求项数的公式是“项数=(末项-首项)÷公差+1”。就有,(2013-1)÷2+1=1007,(1+2013)×1007÷2=1014049。
运用“几何直观”我们可以这样思考:由下图可知,从1开始的连续奇数之和就等于奇数个数的平方。所以有1+3+5+7+9+11+……+2009+2011+2013=1007=1014049 这是典型的“数形结合”的例子,通过“点子图”能把复杂的很多个连续奇数连加的算式转化成一个数的平方。由此让学生感觉到“用几何思维”解决“代数问题”是多么的神奇。
展示“几何直观”在解决代数问题时的神奇,其最终目的是培养学生有“几何直观”的意识。
三、要让孩子养成一个画图的好习惯。
我认为:“几何直观”是指能自觉地、合理地运用“几何的直观性”来解决抽象的代数问题的一种能力。既然是一种能力,必然要经历“感知模仿――内化习得――熟练运用――自如创新”的过程。这个过程并不是一帆风顺的,不同的学生其经历的过程也不会相同,有
2的可能习得较快、有的也许较慢,所以教师要有耐心帮助每个学生经历“几何直观”能力形成的过程。
下面就以“画线段图解决问题”这一“几何直观”能力的培养为例说说如何培养学生养成画图的好习惯。
我们在平时的教学时常常会提醒学生:“当题目看不懂,条件与条件之间的关系理不清楚时,可以画画线段图”。但学生(大多数学生)不会根据题意画线段图,于是很多老师埋怨学生“怎么这么简单的线段图都不会画呢?”
其实对于学生来讲,画线段图并不是那么容易的事。因为画线段图实质上是一个半抽象的过程,画线段图的过程是把“语言描述”数学问题转化成“图形描述”的数学问题,如果图画准确了,题意就理解了,方法就出来了,有时候答案也显现了。
比如在中年级常出现这样的题目:
有甲乙两筐苹果,甲筐苹果的数量是乙筐的3倍,如果甲筐里拿出9千克给乙筐的话,两筐就一样多了。问甲乙两筐原来各有多少苹果?
解这道题的关键是从“甲筐里拿出9千克给乙筐的话,两筐就一样多了”这句话中能分析出“甲筐原来比乙筐多9千克”。那么怎样才能直观的理解呢,这时我们都会想到画图,怎样画呢?其实也是有技巧的,如果从正面开始画,先画乙筐是一段,因为甲是乙的3倍,乙就画3段,接着怎样画拿出9千克,又保证甲剩下的和乙加上9千克后是一样的呢,就比较难画了。此时我们从反面开始画则容易一些,即先画两段一样长的线段,表示现在的甲、乙,然后从乙中去掉一小段,同时甲加上同样长的一小段就可以了。可以说从图中就能看出甲和乙原来各有多少苹果了。
在教学的过程中,首先可以提出“画线段的要求”让学生独立思考、尝试画线段图;然后展示学生各种不同的线段图,一起比较分析哪一种画法(或哪几种,因为好的线段画法有时不止一种)看得最清楚、画起来最简单些(通过比较、择优让学生看懂线段图);选出最优方案后,再让画这些线段图的学生上台讲讲“具体是怎样一步一步画出来的”(通过学生的讲解了解画的步骤);接着让每一个学生试着独立地画一画(感知画图的过程,模仿画线段图)。这样通过看、听、画,学生实际上经历了“感知模仿――内化习得”的过程。当学生初步掌握后,教师应该再呈现一些生活中的问题让学生再画线段图解决,从而慢慢达到“熟练运用”的火候。相信长期如此练习,当画线段图的方法学生能运用“自如”时,面对新的问题时学生就可能会产生“创新”的火花。
四、要在学生的头脑中留住些图形。
在我的教学中,尽量不代替学生做图,对学生图形思维的培养我基本上采取几步走的方式:第一步,以画图为光荣。刚开始学习几何时,学生的作业画图习惯还没有养成,学生对画图仍然有很强烈的恐惧感,很多学生能不画图就不画图,在这种情况下,我总是有意表扬作业本上画图的同学,用他们勇敢的改变行为来激励和影响其他的学生,并严格要求学生作业画图,那些还没有形成良好习惯的学生不仅要重新、认真作图,还无法得到老师的表扬,这样,这种作图习惯就会更快的被学生认可和掌握。第二步,教师示范作图。学生明确必须作图后,很多孩子的图形画得不规范,为了让学生掌握更多的作图技巧,教师必须课堂示范作图过程,以帮助学生积累必要的方法。第三步,学生示范作图。有些孩子能很快掌握作图的技巧,这时教师鼓励学生自己作图,有目的选择部分学生在黑板上作图,好的可以起到示范和榜样的作用;不好的可以让老师了解学生作图中存在的问题,以便及时纠错。最后一步是要求学生读图,图形中的信息还需要学生对图形的标注和利用来完成,这个过程最长也最难,读图的目的是让学生对图形的作用有更多的了解,读图也是为了学生记住图形,慢慢养成利用图形思维的习惯。
第二篇:如何培养学生的几何直观能力
在数学教学中如何培养学生的几何直观能力
如何培养学生的几何直观能力?要遵循学生的认知规律,了解学生的知识结构,依据学生的年龄特点,遵循知识的循序渐进。应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小;应注重通过观察物体、制作模型、设计图案等活动,发展学生的空间观念。
我们的教学要立足教材,领着学生从教材中走出来。教材承载着提升学生空间观念的点滴作用,一点一滴虽然微小,但能小中见大、滴水穿石。
一、遵循“渗透——推导——验证——应用”的教学过程。
二、重视学生动手操作实践,发展学生数学思维。数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面通过几何直观的数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。
三、注重师生互动、生生互动 新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。要始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
借助于几何直观、几何解释,能启迪思路,可以帮助我们理解和接受抽象的内容和方法;抽象观念、形式化语言的直观背景和几何形象,都为学生创造了一个自己主动思考的机会;揭示经验的策略,创设不同的数学情景,使学生从洞察和想象的内部源泉入手,通过自主探索、发现和再创造,经历反思性循环,体验和感受数学发现的过程,提高学生的数学思维能力。直观常常提供证明的思路和技巧,有时严格的逻辑证明无非是直观思考的严格化和数学加工。几何直观是认识的基础, 有助于学生对数学的理解。几何直观已经成为数学界和数学教育界关注的问题,如何培养学生的几何直观能力,还有待于我们进一步去研究。只要我们做个有心人,帮助学生建立起实物与概念间的联系,化抽象为具体,就可以促使学生更好地理解数学概念的本质,也能够提高学生学习的兴趣。
第三篇:培养几何直观能力的教学思考
《全日制义务教育数学课程标准(修改稿)》提出:在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。几何直观主要是指利用图形描述和分析数学问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。《普通高中数学课程标准》也提出要培养和发展学生的几何直观能力以及借助几何直观进行推理论证的能力。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。在小学数学教学中,教师应该选择适当的教学内容,培养学生几何直观的能力。
一、对几何直观的本质把握
数学家克莱因认为:“数学的直观是对概念、证明的直接把握”。蒋文蔚先生指出,几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态。(《数学教育学报》,1997年第4期)徐利治先生提出,直观就是借助于经验、观察、测试或类比联想,所产生的对事物关系直接的感知与认识,而几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知。换言之,通过直观能够建立起人对自身体验与外物体验的对应关系。
这些数学家对直观包括几何直观下了定义。综合这些定义,我们认为
一是透过现象看本质;二是一眼能看出不同事物之间的关联。直观是一种感知,一种有洞察力的定势。几何直观是利用图形洞察问题本质的一种方式,既有形象思维的特点,又有抽象思维的特点。
二、培养几何直观能力的教学方法
在小学数学中培养学生的几何直观能力,要先从直观教学开始,引导学生学会用画图的策略分析题意,解决简单的实际问题,逐步上升到能将直观图与数学语言、符号语言进行合情转换,并逐步在解决数学问题的过程中渗透数形结合思想,感悟数与形、形与数之间的转化。
1.重视直观感知,突出画图策略的教学。
苏教版四年级(下册)《解决问题的策略》主要教学用画直观示意图的方法解决有关面积计算的实际问题。在教学面积计算的问题时,关键要使学生想到画图、正确画图、用图分析和体验画图解决问题的好处。首先可以向学生呈现纯文字的例题,面对比较复杂的数学问题,引导学生想到用画图的方法整理条件和问题。接着鼓励学生尝试画草图,让学生的思维集中于用画图来表达题意,并通过师生交流,进一步完善画出的示意图,使学生感受到画图能清楚地理解题意。然后借助示意图分析数量关系,明确先求什么,再求什么,列式解答后,要
再结合算式和图说说解题思路。最后反思整个解题的过程,突出示意图对解决这个数学问题的重要作用,感受画图策略的价值。“试一试”和“想想做做”的题目与例题相比有一定变化,解决这些问题后,要引导学生思考:“不画图能准确解决这些问题吗?画图时要注意什么?”加深学生对应用画图策略价值的直观体验。
第四篇:培养几何直观能力 让数1
培养几何直观能力 让数学“活”起来
高安市第三小学:刘永维
当我翻开《数学新课标》,就被一个全新教学理念深深地吸引,那就是—— 几何直观。书中是这样说的:“几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。简单的说——就是用图形说话,用图形描述问题,用图形讨论问题,这是一种基本的数学素质。”读到这时我终于茅塞顿开,因为在自己还是学生的时候就是用这种方法学习数学的,既简单又有趣,只是不知道怎么用文字来表达。现在自己已经是教了三年的数学老师,也可以说一直在尝试如何提高小学生的几何直观能力,因为它反映了一个学生能否把他的理解用一种适当的方式表达出来,能否用图形的方式来理解一个比较复杂的问题。几何直为观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。几何直观能力可以说是学生学习数学的金钥匙,所以教师应十分重视学生几何直观能力的培养,下面我就从自己的教学实中践中谈谈培养学生几何直观能力的方法。
一.注重直观感知。数学中有很多推理的过程,需要学生自己凭借生活经验,采用有效的数学手段去解决。这里,几何直观就扮演着至关重要的角色。学生要是能善于运用几何直观,很多问题就能直观形象的展现出来,理解的问题攻克了,解决就不是问题。所以教学中,教师要再学生面对问题时,让他们充分的思考,探究解决问题的多种方法,让学生体会到几何直观是解决问题的一种有效手段,感知几何直观的重要性。例如在教学二年级的“分一分与除法”时,教师要给学生创造充分的活动空间,让学生亲自动手分一分,圈一圈,画一画,摆一摆等,体验平均分的过程,加深学生的直观感知,从而理解平均分的意义及与除法的关系,辨析出乘除法之间的不同,为后面的解决问题打下坚实的基础。
二.重视数与形的结合。我国著名的数学家华罗庚说:“形缺数时难入微,数缺形时少直观”。“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。例如:小丽前面有9人,后面有4人,这一队有多少人?“对于一年级的学生,他们有时很难想到题中还有个隐含的“小丽”,往往列出来的算是“9+4=13(人)”。要是借助直观图形展现出排队的情况,学生就非常醒目的发现队伍由3部分构成,前面的人﹑小丽和小丽后面的人,算式也自认会变成“9+1+4=14(人)”。”学生就会联想起直观图的作用,以直观图形作桥梁,分析题中数量关系,从而解决数学问题。三.重视直观图形与数学符号的合情转换。直观图形的应用要能充分的体现数量关系,展现数学的本质。有时两者合情转换更能体现数与形的密切关系。例如在统计的教学中,统计图中一格代表多少数量,一定的数量需要几格来表示,从图中你能得到哪些数学信息等等。学生在画图和分析数据中了解直观图形和数学符号的相互转化,体会数与形的统一。
四.注重多媒体应用。多媒体技术不但给学生展现出丰富多彩的图形世界,提供直观的演示和展示,表现图形的直观变化,也给学生展示其不易想像的图形,扩大其空间视野,并多了一条解决问题的途径。多媒体的应用给教师的教学提供了有力的工具,也为学生的学建立了直观基础。例如教学钟表一节课时,由于课堂时间有限,要验证1时=60分时,要是仅仅靠老师的讲,学生只能是机械记忆,很难真正理解。利用多媒体展现时针走一大格分针正好走一圈的过程,给予学生视觉感知,使他们从中发现时和分的关系,学生的印象才深刻,才能真正的理解其中所以然,后面的解决问题才能有依据,做到得心应手。
总之几何直观能力是一种非常重要的数学学习能力,它已经成为数学界和数学教育界关注的问题,几何直观能力的培养应随时体现在我们适时的教学中。教学中应关注学生的基本生活经验和生活经历,注重引导学生把生活中对图形的感受与有关知识建立联系,在学生积极主动的参与学习中,几何直观能力的培养不是一道题解决,不是一节课讲授,而是潜移默化的一种方法的探究和深入。在数学教学中,教师应该指导学生养成一种用直观的图形语言,刻画、思考问题的习惯,有机渗透数学思想方法的同时,培养学生的几何直观能力,提高学生的思维能力和解决问题的能力,让数学真正能活学活用。
第五篇:小学数学教学中培养学生的几何直观能力
教学中培养学生的几何直观能力
《数学课程标准》(2011年版)指出:“几何直观主要是指利用图形描绘和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的实力,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”由此可见,教师在教学过程中恰当地使用几何直观,能收到事半功倍的效果。在听了渝中区教研员罗继平老师的讲座 “图形与几何”后我对以往的教学进行反思,发现自己在这块下的功夫还不够。现在我就以往的教学结合这几天的反思谈谈在小学数学课堂教学中如何培养学生的几何直观能力。
一、识图中感知几何直观。
几何直观是借助图形对事物的认识,那么对图形的学习与认识以及运用图形的意识和能力就是几何直观的基础了。教学中要关注学生的基本生活经验和生活经历,注重引导学生把生活中对图形的感受与有关知识建立联系。如在教学《线段、射线、直线》一课时,通过展示科学家用激光器发送到月球的一束激光图片,视觉上给学生直观的认识,引出射线是一条线段将它的一端无限地延长所形成的图形。让学生很容易发现射线的特点,尤其射线是一个理想化的概念,几何直观的感受凸显的更加重要。日常教学中要多采用学生喜爱的“看一看、摆一摆、折一折、剪一剪、拼一拼、量一量、画一画”等具体、实际的活动方式,引导学生通过亲自触摸、观察、测量、制作和实验,把视觉、听觉、触觉、动觉等协同起来,强有力地促进心理活动的内化,从而使学生掌握图形特征,更好地感知几何直观。
二、画图中培养几何直观。
几何直观在本质上是一种通过图形所展开的想象能力,通过画图可以将复杂的数学问题变得简明、形象,有助于探索解决问题的思路。因此,在小学数学教学中激发学生的画图兴趣,促进几何直观能力的发展,是十分重要的。数学兴趣是推动学生不懈追求的一种内在驱动力,而画图兴趣则是几何直观教学的载体。教学中要善于启发和创设情境,激发学生的画图兴趣,培养学生的几何直观能力。如在教学二年级《几倍》一课时,创设游玩动物园的情景:动物园里有6头小狮子,2头大狮子,小狮子的头数是大狮子的几倍?让学生尝试用自己喜欢的图形画一画,来表示6是2的几倍?通过画图,学生很直观地看出6里面有3个2,也就是说6是2的3倍,这样为抽象的倍的概念建立了具体形象的表象,理解起来轻松很多,以后在学习较复杂的“和倍、差倍”问题时,学生会很容易想到画直观图帮助解决问题。课上通过用自己喜欢的方式画图,激发了孩子画图的兴趣,并抓住教学契机让学生展示自己的作品,说出自己的想法,及时对学生进行表扬鼓励,激发学生作图的热情。
三、数形结合中发展几何直观。
华罗庚先生的《谈谈与蜂房结构有关的数学问题》一书中,有一首小词:“数与形,本是相倚依,焉能分作两边飞。数无形时少直观,形少数时难入微。数形结合百般好,隔离分家万事非;切莫忘,几何代数统一体,永远联系,切莫分离!”这首词形象生动、深刻地指明了“数形结合”思想的价值。其实质是把数学问题中的运算、数量关系等与几何图形与直观图像结合起来进行思考,从而使“数”与“形”各展其长,优势互补,相辅相成,使逻辑思维与形象思维完美地统一起来,从而顺利、有效地解决问题。小学数学教学中,应特别注重数形结合思想的渗透,从而更好地发展学生的几何直观能力。
在低年级运算教学中,借助数射线将抽象的“数”直观形象化,有助于理解运算,将运算直观形象化。例如:“加法”就是在数射线上继续向右数;“减法”就是在数射线上先找到“被减数”,然后再向左数;“乘法”就是在数射线上几个几个地向右数;“除法”就是在数射线上先找到“被除数”,然后向左几个几个地数,如果恰好数到“0”,就是除尽,数了几次,商就是几,当不能恰好数到“0”,就产生了余数,数射线是理解“有余数除法”的形象化载体。
几何直观可以帮助学生直观地理解数学本质,体验数学创造性工作历程,开发学生的创造激情,形成良好的思维品质。“删繁就简三秋树,领异标新二月花”,要让简约的几何直观真正充满张力,成为师生生命成长的栖息地,要让小学数学教学从几何直观中的简约中,真正走向更为深刻的思维价值的丰富,还需要我们在今后的教学实践中不断地思考和探索。