第一篇:第二节用空间向量证明线线垂直与线面垂直[大全]
第二节用空间向量证明线线垂直与线面垂直
一、空间向量及其数量积
1、在空间,既有大小又有方向的量称为空间向量。用AB或a表示,其中向量的大小称为向量的长度或
或a。正如平面向量可用坐标(x,y.)表示,空间向量也可用坐标(x,y,z)表示。若已知点A坐标为(x1,y1,z1),点B坐标为(x2,y2,z2)则向量AB=(x2-x1,y2-y1,z2-z1)即是终点坐标减起点坐标。222在空间,知道向量=(x,y,z
xyz
2、空间向量数量积
① 已知两个非零向量a、b,在空间任取一点O,作OA=a,OB=b,则角∠AOB叫向量a与b的夹角,记作<a,b>规定,若0≤<a,b>≤,若<a,b>=
⊥。
② 已知空间两个向量a、b
COS<a,b>叫向量a、b的数量积,记作ab
COS<,>若⊥a=0
③ 若已知空间向量a=(x1,y1,z1),b=(x2,y2,z2)则ab=x1x2+y1y2+z1z2,COS<a,,称a与b垂直,记作a2
x1x2y1y2z1z
2x1y1z1x2y2z2222222
例1 如图,已知直三棱柱ABC-A1B1C1中,∠BCA=900,D1、E1分别为A1B1、A1C1中点,若BC=CA=CC1,求向BD1与AE1所成角的余弦值。
B
D1 1C
6练习:已知正方体ABCD—A1B1C1D1中,B1E1=D1F1=
F
C1B
1C
DB
二、利用向量证线线垂直与线面垂直
A1B
1,求向量BE1与DF1所成角的余弦值。
4例2 在正方体ABCD—A1B1C1D1中,求证A1C⊥平面AB1D1
CC
练习:在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P为DD1的中点,求证:B1O⊥平面PAC。
A
例3 如图,PA⊥矩形ABCD所在平面,M, N分别是AB ,PC中点(1)求证:MN⊥CD
(2)若∠PDA=45,求证:MN⊥平面PCD
6N M
B
C
练习:正方体ABCD—A1B1C1D1中,M是棱D1D中点,N是AD中点,P为棱A1B1上任一点。求证:NP⊥AM
作业:
A1
C1
M C 1.如图,正方体ABCD—A1B1C1D1中,E是BB1中点,O是底面ABCD中心,求证:OE⊥平面D1AC.2.如图,正方体ABCD—A1B1C1D1中,O ,M分别是BD1, AA1中点,求证:OM是异面直线AA1和BD1的公垂线.DA13、如图,直三棱柱ABC-—A1B1C1中,∠ACB=90,AC=1,CB=2,侧棱AA1=1,侧面AA1B1B的两
条对角线交点为D,B1C1的中点为M。求证:CD⊥平面BDM
6AB B1
4在棱长为a的正方体ABCD—A1B1C1D1中,E,F分别为棱AB和BC的中点,M为棱B1B
上任一点,当
B1M
值为多少时能使D1M⊥平面EFB1 MB
A
E5、如图,ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,CD=a,F为BE中点,求证:AF⊥BD
C
A6、如图,已知直三棱柱ABC-A1B1C1中B1C1=A1C1,A1B⊥AC1。求证:A1B⊥B1C
A
A111
第二篇:110909用向量的方法来证明线线垂直
广州艺术学校美术绘画专业3708855611-09-09
用向量的方法来处理线线垂直
异面的线线垂直通常都要化成线线垂直,但是很多学生不清楚应该找哪一个线面垂直,用向量的方法就避免了找的过程。
1、在三棱锥V-ABC中,VA=VC,AB=BC,求证VB⊥AC
证明:(1)建立向量:设ABa,ACb,AVc
1VA=VC:(2)翻译条件:○VCVAACcb,得
|c||cb|化简得:___________________________________
AB=BC:BCBAACba,得○
_____________,化简得_______________________________________
(3)翻译结论:VB⊥AC:VBVAABca,要证明:(ca)b0
计算过程:
2、(同上题)在三棱锥V-ABC中,VA=VC,AB=BC,求证VB⊥AC
证明:设BAa,BCb,BVc3、在三棱锥A—BCD中,AB⊥平面BCD,DC=DB,E为BC中点,求证:AC⊥DE;
证明:(1)建立向量:设BDa,BCb,BAcAB⊥平面翻译条件:○BCD:ca,cb,得ca0,cb0DC=DB:○DCDBBCab,得:|ab||a|
化简得:_______________________________E○11为BC中点:BEECBCb 2
2翻译结论:AC⊥DE:ACABBCcb
1DEDBBEab 21要证明:(cb)(ab)0 2
计算过程:
4、如图,四棱锥PABCD中,底面ABCD为平行四边形,DAB60,AB2AD,PD底面ABCD.证明:PABD;
证明:设设DAa,DCb,DPc
1底面翻译条件:○ABCD为平行四边形:ABDCb
02DAB60:ADAB|AD||AB|cos60= ○
3○AB2AD:|b|2|a|
4PD底面ABCD:_________________________________________ ○
翻译结论:
5、如图,在三棱锥PABC中,⊿PAB是等边三角形,∠PAC=∠PBC=90 º
证明:AB⊥PC6、如图,在四面体ABOC中,OC⊥OA。OC⊥OB,∠AOB=120°,且OA=OB=OC=1,P为AC的中点,Q在AB上且AB=3AQ,证明:PQ⊥OA;
7、如图5.在椎体P-ABCD中,ABCD是边长为1的棱形,且∠DAB=60,PAPDE是BCC的中点.证明:(1)AD⊥DE(2)AD⊥PB8、已知在三棱锥S--ABC中,BC⊥平面SAC,AD⊥SC于D,求证:AD⊥SB
证明:(1)建立向量:设CAa,CBb,CScBC⊥平面SAC:_______________________________ 翻译条件:○
2AD⊥SC:ADACCDakc(不知道D点位于SC什么位置)○
得:___________________________________
翻译结论:AD⊥SB:SBSCCBcb
要证明: ______________________________________
第三篇:证明空间线面平行与垂直
证明空间平行与垂直
知识梳理
一、直线与平面平行
1.判定方法
(1)定义法:直线与平面无公共点。
(2)判定定理: a
ba//ba//
//
(3)其他方法:a//a
a//
2.性质定理:a
a//b
b
二、平面与平面平行
1.判定方法
(1)定义法:两平面无公共点。
a//
b//
(2)判定定理:a //
b
abP
(3)其他方法:aa// //;// a//
//
2.性质定理:a a//b
b
三、直线与平面垂直
(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。
(2)判定方法
① 用定义.abac
② 判定定理:bcAa
b
c
a
③ 推论: b
a//b
(3)性质 ①
aa
ab②a//bbb
四、平面与平面垂直
(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。
a
(2)判定定理
a
(3)性质
l
①性质定理
a
al
l②Al
P
PA垂足为A④PA
PPA
“转化思想”
面面平行线面平行 线线平行 面面垂直线面垂直 线线垂直
例题1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;例
题2.如图,在棱长为2的正方体
ABCDA1B1C1D1中,O为BD1的中点,M为BC的中点,N为AB的中点,P为BB1的中点.(I)求证:BD1B1C;(II)求证BD1平面MNP;
例题3.如图,在三棱锥VABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且ACBCa,∠VDC0(I)求证:平面VAB⊥平面VCD;
π. 2
π
(II)试确定角的值,使得直线BC与平面VAB所成的角为.
D
例题4.(福建省福州三中2008届高三第三次月考)如图,正三棱柱ABCA1B1C1的所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.BB
(1)求证:AE平面A1BD;
(2)求二面角DBA1A的大小(用反三角函数表示);
A1
CHA
C
第四篇:线线、线面平行垂直的证明
空间线面、面面平行垂直的证明
12.在正方体ABCD-A1B1C1D1中,E、F分别为AB、BC的中点,(Ⅰ)求证:EF//面A1C1B。(Ⅱ)B1D⊥面A1C1B。
D'
3.如图,在正方形ABCDA'B'C'D',A'(1)求证:A'B//平面ACD';
(2)求证:平面ACD'平面DD'B。
A
4.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC;(2)AF⊥平面EDB.C'
C
B
5.如图,在正方体ABCDA1B1C1D1中,O是AC和BD的交点.求证:(Ⅰ)OC1∥平面AB1D1;(Ⅱ)平面ACC1平面AB1D1.
DA
C1
C
(5题图)
6.如图,长方体ABCDA1B1C1D1中,ABAD1,AA12,点P为
DD1的中点。
(1)求三棱锥DPAC的体积;(2)求证:直线BD1∥平面PAC;(3)求证:直线PB1平面PAC.C1
D1
B1
A1
P
DC
B
A
7.如图,在四棱锥PABCD,底面ABCD是正方形,侧棱
PD底面ABCD,PDDC,E是PC的中点,作EFPB于点F。
(1)证明:PA//平面EDB;(2)证明:DEBC
(3)证明:PB平面EFD。
8.ABCDA1B1C1D1是长方体,底面ABCD是边长为1的正方形,侧棱
A
AA12,E是侧棱BB1的中点.(Ⅰ)求证:AE平面A1D1E;
(Ⅱ)求三棱锥AC1D1E的体积.
第五篇:线线垂直、线面垂直、面面垂直的判定与性质
清新县滨江中学2012届高三文科数学第一轮复习资料2011-12-
31空间中的垂直关系
1.判断线线垂直的方法:所成的角是,两直线垂直;
垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的,那么它也和这条斜线垂直。三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直
PO,O推理模式: PAAaAO。
a,aAP
2.线面垂直
定义:如果一条直线l和一个平面α相交,并且和平面α内的任意一条直线都,我们就说直线l和平面αl叫做平面的垂线,平面α叫做直线l的垂面,直线与平面的交点叫做垂足。直线l与平面α垂直记作:。
直线与平面垂直的判定定理:如果,那么这条直线垂直于这个平面。
推理模式:
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线。
3.面面垂直
两个平面垂直的定义:相交成的两个平面叫做互相垂直的平面。两平面垂直的判定定理:(线面垂直面面垂直)
如果,那么这两个平面互相垂直。
推理模式:
两平面垂直的性质定理:(面面垂直线面垂直)
若两个平面互相垂直,那么在一个平面内垂直于它们的的直线垂直于另一个平面。
课后练习
1、(2008上海,13)给定空间中的直线l及平面,条件“直线l与平面内无数条直线都垂直”是“直线l与平面垂直”的()条件
A.充要B.充分非必要C.必要非充分D.既非充分又非必要
2、已知正方体ABCD-A1B1C1D1中,直线l是异面直线AB1 和A1D的公垂线,则直线l与直线BD1的关系为()
A.l⊥BD1B.l∥BD1C.l与BD1 相交D.不确定
1、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点
(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE.2、如图,棱柱ABCA1B1C1BCC1B1的侧面是菱形,B1CA1B
证明:平面AB1C平面A1BC13、如图,四棱锥PABCD中,底面ABCD为平行四边形。DAB60,AB2AD,PD 底面ABCD,证
明:PABD4、如图所示,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M
面面垂直的性质
1、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.S
A C2、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD 证明:AB⊥平面VAD
V D
C B3、如图,平行四边形ABCD中,DAB60,AB2,AD4将
沿BD折起到EBD的位置,使平面EDB平面ABD 求证:ABDE4、如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD;
(2)平面BEF⊥平面PAD
(第4题
图)
CBD
5.如图,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =2,D 是A1B1 中点.(1)求证C1D ⊥平面A1B ;(2)当点F 在BB1 上什么位置时,会使得AB1 ⊥平面C1DF ?并证明你的结论