第一篇:命题与证明的知识点总结
命题与证明的知识点总结(湘教版)
一、知识结构梳理
1.定义:
(1)概念①;(2)分类
2.命题② 假命题(可通过来说明)
(3的形式。
命题与证明
(4)互逆命题(1)公理:
(2)定理:3.公理与定理
(1)概念:4.证明①理解题意,画出
(2)证明命题的一般步骤②写出已知,③写出
(3)反证法
二、知识点归类
知识点定义的概念对于一个概念特征性质的描述叫做这个概念的定义。如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。
注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”
等不能在定义中出现。
例1 在下列横线上,填写适当的概念:
(1)连结三角形两边中点的线段叫作三角形的;
(2)能够完全重合的两个图形叫做;
(3)两组对边分别平行的四边形叫做;
例2 叙述概念的定义
(1)数轴;(2)等腰三角形
知识点命题
知识点一命题的概念
叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命 如“你是一个学生”、“我们所使用是教科书是湘教版的”等。
注意:(1)命题必须是一个完整的句子。
(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。
例 下列句子中不是命题的是()
A 明天可能下雨B 台湾是中国不可分割的部分
C 直角都相等D 中国是2008年奥运会的举办国
知识点二真命题与假命题
如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题
注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。例 下列命题中的真命题是()
A 锐角大于它的余角B 锐角大于它的补角
C 钝角大于它的补角D 锐角与钝角等于平角
知识点三命题的结构
每个命题都有条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。一般地,命题都可以写出“如果------,那么-------”的形式。有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。
例 把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。
1、同角的余角相等
2、两点确定一条直线
知识点四证明及互逆命题的定义
1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。
2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。
注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。例 说出下列命题的逆命题,并指出它们的真假。
(1)直角三角形的两锐角互余;(2)全等三角形的对应角相等。
公理与定理
知识点一公理与定理
数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理。
以基本定义和公理作为推理的出发点,去判断其他命题的真假,已经判断为真的命题称为定理。
注意:(1)公理是不需要证明的,它是判断其他命题真假的依据,定理是需要证明;(2)定理都是真命题,但真命题不一定都是定理。
例 填空:(1)同位角相等,则两直线;(2)平面内两条不重合的直线的位置关系是;(3)四边形是平行四边形。
知识点二互逆定理
如果一个定理的逆命题也是定理,那么称它是原来定理的逆定理,这两个定理称为互逆定理。
注意:每个命题都有逆命题,但并非所有的定理都有逆定理。如:“对顶角相等”就没逆定理。
证明
知识点一证明的含义
从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,从而判定该命题为真,这个过程叫做证明。
注意:(1)证明一个命题时,首先要分清命题条件和结论,其次要从已知条件出发,运用定义、公理、定理进行推理,得出结论。
(2)证明的过程必须做到步步有据。
例.已知:如图正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF
(1)求证:ΔBCE≌ΔDCF
(2)若∠FDC=30°,求∠BEF的度数。
AD
BCF
知识点二反证法
从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法。
反证法的关键在于反设所证命题的结论。适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较简单。
反证法证题步骤:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判断假设不正确,从而肯定命题的结论成立。例在 △ABC中,∠A、∠B、∠C是它的三个内角。
求证:在∠A、∠B、∠C中不可能有两个直角。
三、巩固训练
一、填空
1.把命题“三边对应相等的两个三角形全等”写成“如果„„,那么„„”的形式是________________________________________________________________________.222.命题“如果ab ,那么ab”的逆命题是________________________________.3.命题“三个角对应相等的两个三角形全等”是一个______命题(填“真”或“假”).4.如图,已知梯形ABCD中, AD∥BC, AD=3,AB=CD=4, BC=7,则∠B=_______.5.用反证法证明“b1∥b2”时,应先假设_________.二、选择题
1.下列语句中,不是命题的是()
A.直角都等于90°B.面积相等的两个三角形全等
C.互补的两个角不相等D.作线段AB
2.下列命题是真命题的是()
A.两个等腰三角形全等B.等腰三角形底边中点到两腰距离相等
C.同位角相等D.两边和一角对应相等的两个三角形全等
3.下列条件中能得到平行线的是()
①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线.A.①②B.②④C.②③D.④
4.下列命题的逆命题是真命题的是()
A.两直线平行同位角相等B.对顶角相等
C.若ab,则a2b2D.若(a1)xa1,则x
15.三角形中,到三边距离相等的点是()
A.三条高的交点B.三边的中垂线的交点
C.三条角平分线的交点D.三条中线的交点
6.下列条件中,不能判定两个直角三角形全等的是()
A.两条直角边对应相等B.斜边和一锐角对应相等
C.斜边和一条直角边对应相等D.面积相等
7.△ABC的三边长a,b,c满足关系式(ab)(bc)(ca)0,则这个三角形一定是(A.等腰三角形B.等边三角形
C.等腰直角三角形D.无法确定
8.如图,点E在正方形ABCD的边AB上,若EB的长为1,EC的长为2,那么正方形ABCD的面积是()
三、判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明.(1)有一个角是60°的等腰三角形是等边三角形.(2)有两个角是锐角的三角形是锐角三角形.)
第二篇:命题与证明的知识点总结
命题与证明的知识点总结(湘教版)
一、知识结构梳理
1.定义:
(1)概念
①
(2)分类
2.命题② 假命题(可通过
(3)形式:命题都可写成的形式。
命题与证明(4)互逆命题
1)公理:
3.公理与定理
(2)定理:
(1)概念:
4.证明①理解题意,画出
(2)证明命题的一般步骤②写出已知,③写出
(3)反正法
二、知识点归类
知识点定义的概念对于一个概念特征性质的描述叫做这个概念的定义。如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。
注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”
等不能在定义中出现。
例1 在下列横线上,填写适当的概念:
(1)连结三角形两边中点的线段叫作三角形的;
(2)能够完全重合的两个图形叫做;
(3)两组对边分别平行的四边形叫做;
例2 叙述概念的定义
(1)数轴;(2)等腰三角形
知识点命题
知识点一命题的概念
叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命 如“你是一个学生”、“我们所使用是教科书是湘教版的”等。
注意:(1)命题必须是一个完整的句子。
(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。
例 下列句子中不是命题的是()
A 明天可能下雨B 台湾是中国不可分割的部分
C 直角都相等D 中国是2008年奥运会的举办国
知识点二真命题与假命题
如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题
注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。例 下列命题中的真命题是()
A 锐角大于它的余角B 锐角大于它的补角
C 钝角大于它的补角D 锐角与钝角等于平角
知识点三命题的结构
每个命题都有条件和结论两部分组成。条件是已知的事项,结论是由已知事项推断出的事项。一般地,命题都可以写出“如果------,那么-------”的形式。有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。
例 把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。
1、同角的余角相等
2、两点确定一条直线
知识点四证明及互逆命题的定义
1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。
2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。
注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。例 说出下列命题的逆命题,并指出它们的真假。
(1)直角三角形的两锐角互余;(2)全等三角形的对应角相等。
公理与定理
知识点一公理与定理
数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其它命题真假的原始依据,这样的真命题叫做公理。
以基本定义和公理作为推理的出发点,去判断其他命题的真假,已经判断为真的命题称为定理。
注意:(1)公理是不需要证明的,它是判断其他命题真假的依据,定理是需要证明;(2)定理都是真命题,但真命题不一定都是定理。
例 填空:(1)同位角相等,则两直线;(2)平面内两条不重合的直线的位置关系是;(3)四边形是平行四边形。
知识点二互逆定理
如果一个定理的逆命题也是定理,那么称它是原来定理的逆定理,这两个定理称为互逆定理。
注意:每个命题都有逆命题,但并非所有的定理都有逆定理。如:“对顶角相等”就没逆定理。
证明
知识点一证明的含义
从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,从而判定该命题为真,这个过程叫做证明。
注意:(1)证明一个命题时,首先要分清命题条件和结论,其次要从已知条件出发,运用定义、公理、定理进行推理,得出结论。
(2)证明的过程必须做到步步有据。
知识点二命题的证明
证明几何命题的表述格式:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写条件,在“求证”中写出结论;(3)在“证明”中写出推理过程。知识点三折叠问题
1、同旁,与其重叠或不重叠;显然,“折”是过程,“叠”是结果。折叠,就是将图形的一部分沿着一条直线翻折180°,使它与另一部分在这条直线
2、折叠的性质:折叠不改变图形的大小和形状,即折叠部分在折叠前后是全等的图形,满足公理“轴反射”
知识点四反证法
从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的证明方法叫做反证法。
反证法的关键在于反设所证命题的结论。适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而否定则比较简单。
反证法证题步骤:(1)假设命题的结论不成立,即假设命题结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判断假设不正确,从而肯定命题的结论成立。例在 △ABC中,∠A、∠B、∠C是它的三个内角。
求证:在∠A、∠B、∠C中不可能有两个直角。
第三篇:§24.3命题与证明
.cn
§24.3 命题与证明
1.定义、命题与定理
试一试
观察图24.3.1中的图形,找出其中的平行四边形.
图
24.3.1要解决这个问题,首先要弄清楚怎样的图形才能称为平行四边形.你还记得 以前学过的知识吗?
“有两组对边分别平行的四边形叫做平行四边形”这句话说明了平行四边形 的含义以及区别于其他图形的特征.一般地,能明确指出概念含义或特征的句子,称为定义(definition).还可以举出如下的一些定义:
(1)有一个角是直角的三角形,叫做直角三角形.
(2)有六条边的多边形,叫做六边形.
(3)在同一平面内,两条不相交的直线叫做平行线.
定义必须是严密的.一般避免使用含糊不清的术语,比如“一些”、“大概”、“差不多”等不能在定义中出现.正确的定义能把被定义的事物或名词与其他的 事物或名词区别开来.
思 考
试判断下列句子是否正确.
(1)如果两个角是对顶角,那么这两个角相等;
(2)三角形的内角和是180°;
(3)同位角相等;
(4)平行四边形的对角线相等;
(5)菱形的对角线相互垂直.
根据已有的知识可以判断出句子(1)、(2)、(5)是正确的,句子(3)、(4)是错误的.像这样可以判断它是正确的或是错误的句子叫做命题(proposition).正确的命题称为真命题,错误的命题称为假命题.
在数学中,许多命题是由题设(或条件)和结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项.这种命题常可写成“如果„„那么„„”的形式.其中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.例-1-
如,在命题(1)中,“两个角是对顶角”是题设,“这两个角相等”是结论.例1 把命题“在一个三角形中,等角对等边”改写成“如果„„那么„„”的形式,并分别指出命题的题设与结论.
解这个命题可以写成:“如果在一个三角形中有两个角相等,那么这两个角所对的边也相等.” 这里的题设是“在一个三角形中有两个角相等”,结论是“这两个角所对的边也相等”.数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理(axiom).例如,我们通过探索,已经知道下列命题是正确的:
(1)一条直线截两条平行直线所得的同位角相等;
(2)两条直线被第三条直线所截,如果同位角相等,那么这两条直线
平行;
(3)如果两个三角形的两边及其夹角(或两角及其夹边,或三边)分
别对应相等,那么这两个三角形全等;
(4)全等三角形的对应边、对应角分别相等.
我们把这些作为不需要证明的基本事实,即作为公理.
此外,我们把等式、不等式的有关性质以及等量代换(即在等式或不等式中,一个量用它的等量替代)都作为逻辑推理的依据.
有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理(theorem).
例如,运用公理“两角及其夹边分别对应相等的两个三角形全等”,可以得到定理:“两角及其一角的对边分别对应相等的两个三角形全等.”
定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的根据.
练习
1.找出右图中的锐角,并试着对“锐角”写出一个确切的定义
.2.把下列命题改写成“如果„„那么„„”的形式,并指出它的题设和结论.(1)全等三角形的对应边相等;
(2)平行四边形的地边相等.3.指出下列命题中的真命题和假命题.(1)同位角相等,两直线平行;
(2)多边形的内角和等于180°;
(3)如果两个三角形有三个角分别相等,那么这两个三角形全等.2.证明
思 考
一位同学在钻研数学题时发现:
2+1=3,2×3+1=7,2×3×5+1=31,2×3×5×7+1=211.
于是,他根据上面的结果并利用素数表得出结论: 从素数2开始,排在前 面的任意多个素数的乘积加1一定也是素数.他的结论正确吗?
如图24.3.2所示,一个同学在画图时发现: 三角形三条边的垂直平分线的 交点都在三角形的内部.于是他得出结论: 任何一个三角形三条边的垂直平分线的交点都在三角形的内部.他的结论正确吗?
图
24.3.2我们曾经通过计算四边形、五边形、六边形、七边形、八边形等的内角和,得到一个结论: n边形的内角和等于(n-2)×180°.这个结果可靠吗?是否有一个多边形的内角和不满足这一规律?
上面几个例子说明: 通过特殊的事例得到的结论可能正确,也可能不正确.因此,通过这种方式得到的结论,还需进一步加以证实.
根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明(proof).
前面的学习已经告诉我们: 一条直线截两条平行线所得的内错角相等.下面我们运用前面所提到的基本事实,即公理来证明这个结论.
例1 证明: 一条直线截两条平行直线所得的内错角
相等.
已知: 如图24.3.3,直线l1∥l2,直线l3分别和l1、l
2相交于点A、B.
求证: ∠1=∠3.
证明 因为l1∥l2(已知),所以∠1=∠2(两直线平行,同位角相等).
图
24.3.3 又∠2=∠3(对顶角相等),所以∠1=∠3(等量代换).
如果要证明或判断一个命题是假命题,那么我们只要举出一个符合命题题设而不符合结论的例子就可以了,这称为“举反例”.例如,要证明“一个锐角与一个钝角的和等于一个平角”是假命题,只需举一个反例,例如锐角等于30°,钝角等于120°,但它们的和就不等于180°,从而说明这个命题是假命题.
练习
1.根据下列命题,画出图形并写出“已知”、“求证”(不必证明);
(1)两条边及其中一边上的中线分别对应相等的两个三角形全等;
(2)在一个三角形中,如果一边上的中线等于这边的一半,那么这个三角
形是直角三角形.2.判断“同位角相等”是真命题还是假命是,并说明理由.在以往的学习中,我们已经知道下面的例题所表述的结论
是正确的,现在通过推理的方式给予证明.
例2 内错角相等,两直线平行.
已知:如图24.3.4,直线l3分别交l1、l2于点A、点B,∠
1=∠2.
求证: l1∥l2.
图
24.3.4证明 因为∠1=∠2(已知),∠1=∠3(对顶角相等),所以∠2=∠3(等量代换),所以l1∥l2(同位角相等,两直线平行).
例3 已知:如图24.3.5,AB和CD相交于点O,∠A=
∠B.
求证: ∠C=∠D.
证明 因为∠A=∠B(已知),所以AC∥BD(内错角相等,两直线平行). 图
24.3.5 所以∠C=∠D(两直线平行,内错角相等).
试一试请在下面题目证明中的括号内填入适当的理由.已知:如图24.3.6,AD=BC,CE∥DF,CE=DF.求证: ∠E=∠F.证明: 因为CE∥DF(),所以∠1=∠2().在△AFD和△BEC中,因为 图
24.3.6DF=CE(),∠1=∠2(),AD=BC(),所以△AFD≌△BEC(),所以∠E=∠F().
练习
1.已知:如图,直线AB、CD被EF、GH所截,∠1=∠2,求证:∠3=∠4.(第1题)
(第2题)
2.已知:如图,AB=AC, ∠BAO=∠CAO.求证:OB=OC.习题24.31.判断下列命题是真命题还是假命题,若是假命题,则举一个反例加以说明.(1)两个锐角的和等于直角;
(2)两条直线被第三条直线所截,同位角相等;
(3)有两条边和一个角分别对应相等的两个三角形全等.2.把下列命题改成“如果„„那么„„”的形式.(1)三角形全等,对应边相等;
(2)菱形的对角线相互垂直;
(3)三个内角都等于60°的三角形是等边三角形.3.证明:平等四边形的两组对边分别相等.(提示:连结AC)
(第3题)(第4题)
4.如图,OA=OB,PA=PB,试证明:OP平分∠AOB.5.证明:矩形的两条对角线长相等.(第5题)(第6题)
6.如图,已知:DC=AB,AD=BC,点E、F在AC上,AE=CF.试找出图中所有的全等三角形,并用有关全等三角形的基本事实加以证明.
第四篇:命题与证明导学案
命题与证明(2)
学习目标:
1、会区分定理,公理和命题。
2、了解证明的含义,体验证明的必要性。
重点:证明的含义和表述格式。
难点:按照规定格式表述证明的过程。
一、独学(课本77~78页)
1、所有推理的原始共同出发点是_________________________________。
2、几何推理中,把那些从长期实践中总结出来的,不需要再作证明的____________叫做公理。(举例证明)
3、有些命题。它们的正确性已经过推理得到证实,并被选定作为判定其它命题真假的依据,这样的命题叫做_____________,推理的过程叫做_________________。
二、对学(要探究出因与果,会填写理由,会使用“∵”“∴”)
例1:已知直线c与直线a、b相交,且12,求证ab。
=180,OE平分AOB,OF平分BOC,求证例2:已知,如图AOBBOC
OEOF.注:
1、做题时要写“证明”二字,不能写“解”。
2、结对双方要共同探究各步的因果关系,一定要写出每一步的理由(即根据题目使用“∵”“∴”)。
3、对文字说明题,一定要根据题意写出“已知”、“求证”和“画出图形”最后给出证明。
三、群学(组内交流展示)
1、课本78页练习(1)(2).2、第79~80页练习(1)(2).四、拓展练习.证明:如图ABCD,DF平分CDB,BE平分ABD,求证:12。
五、小结收获.六、作业:第83页第5题(1)(2)。
第五篇:命题与证明教学设计
八年级数学教学设计
肥东县王城中学王合课题:14.2证明(2)
教材与学生现实的分析
1、本节内容是《命题与证明》的教学流程设计
八年级数学教学设计
八年级数学教学设计
八年级数学教学设计
八年级数学教学设计
八年级数学教学设计