第一篇:立体几何问题1
16.(辽宁理12)。已知球的直径SC=4,A,B是该球球面上的两点,AB=,ASCBSC30,则棱锥S—ABC的体积为
(A)3
【答案】C
(B)23(C)(D)1
第二篇:立体几何证明问题
证明问题
例1.如图,E、F分别是长方体边形
.-的棱A、C的中点,求证:四边形是平行四
例2.如图所示,ABCD为正方形,SA⊥平面ABCD,过点A且垂直于SC的平面分别交SB、SC、SD与E、F、G.求证:AE⊥SB.例3.如图,长方体∠求证:
=90°.⊥
PQ
-中,P、Q、R分别为棱、、BC上的点,PQ//AB,连结,例4.已知有公共边AB的两个全等的矩形ABCD和ABEF不同在一个平面内,P、Q分别是对角线AE、BD上的点,且AP=DQ,如图所示.求证:PQ//平面
CBE.例5.如图直角三角形ABC平面外一点S,且SA=SB=SC,且点D为斜边AC的中点.(1)求证:SD⊥平面ABC.(2)若AB=AC,求证BD⊥平面
SAC.例6.如图,在正方体
-中,M、N、E、F分别是棱、、、的中点.求证:平面AMN//平面
EFDB.例7.如图(1)、(2),矩形ABCD中,已知AB=2AD,E为AB的中点,将ΔAED沿DE折起,使AB=AC.求证:平面ADE⊥平面
BCDE.
第三篇:立体几何线面平行问题
线线问题及线面平行问题
一、知识点 1 1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点; ..
2.公理4 :推理模式:a//b,b//ca//c.
3.等角定理:4.等角定理的推论:若两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.5.空间两条异面直线的画法
6.异面直线定理:连结平面内一点与平面外一点的直线,b
a
1AA
推理模式:A,B,l,BlAB与l
7.异面直线所成的角:已知两条异面直线a,b,经过空间任一点O作直线a//a,b//b,a,b所成的角的大小与点O的选择无关,把a,b所成的锐角(或直角)叫异面直线a,b所成的角(或夹角).为了简便,点O(0,
28.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线a,b 垂直,记作ab.
9.求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;
(210.两条异面直线的公垂线、距离:和两条异面直线都垂直相交....
异面直线的的定义要注意“相交
11.异面直线间的距离:两条异面直线的公垂线在这两条异面直线间的线段垂线段)的长度,叫做两条异面直线间的距离.
12.直线和平面的位置关系(1)直线在平面内(无数个公共a点);(2)直线和平面相交(有且只有一个公共点);(3)直
线和平面平行(没有公共点)——用两分法进行两次分
类.它们的图形分别可表示为如下,符号分别可表示为a,aA,a//. a13.线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:l,m,l//ml//.
14.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这
相交,那么这条直线和交线平行.推理模式:l//,l,ml//m.
lm个平面
二、基本题型
1.判断题(对的打“√”,错的打“×”)
(1)垂直于两条异面直线的直线有且只有一条()
(2)两线段AB、CD不在同一平面内,如果AC=BD,AD=BC,则AB⊥CD()(3)在正方体中,相邻两侧面的一对异面的对角线所成的角为60º()(4)四边形的一边不可能既和它的邻边垂直,又和它的对边垂直()
2.右图是正方体平面展开图,在这个正方体中
C
①BM与ED平行;②CN与BE是异面直线;③CN与BM成60º角; ④DM与BN垂直.以上四个命题中,正确命题的序号是()(A)①②③(B)②④(C)③④(DF
3.已知空间四边形ABCD.(1)求证:对角线AC与BD是异面直线;(2)若AC⊥BD,E,F,G,H分别这四条边AB,BC,CD,DA的中点,试判断四边形EFGH的形状;(3)若AB=
BC=CD=DA,作出异面直线AC与BD的公垂线段.4.完成下列证明,已知直线a、b、c不共面,它们相交于点P,Aa,Da,Bb,Ec求证:BD和AE证明:假设__ 共面于,则点A、E、B、D都在平面__Aa,Da,∴__γ.Pa,∴P__.Pb,Bb,Pc,Ec∴__,__,这与____矛 ∴BD、E,F,G,H分别是空间四边形四条边AB,BC,CD,DA的中点,(1)求证四边形EFGH是
2)若AC⊥BD时,求证:EFGH为矩形;(3)若BD=2,AC=6,求EG
HF
;(4)
若AC、BD成30º角,AC=6,BD=4,求四边形EFGH的面积;(5)若AB=BC=CD=DA=AC=BD=2,求AC与BD间的距离.6 间四边形ABCD中,ADBC2,E,F分别是AB,CD的中点,EFAD,BC7.在正方体ABCD-A1B1C1D1中,求(1)A1B与B1D1所成角;(2)AC与BD1所成角.8.在长方体ABCDABCD中,已知AB=a,BC=b,AA=c(a>b),求异面直线DB与AC
9.如图,已知P是平行四边形ABCD所在平面外一点,M、N分别
是AB、PC1)求证:MN//平面PAD;(2)若MNBC4,PA 求异面
直线PA与MN10.如图,正方形ABCD与ABEF不在同一平面内,M、N分别在AC、BF上,且AMFN求证:MN//平面CBE
参考答案:
1.(1)×(2)×(3)√(4)×2.C
3.证明:(1)∵ABCD是空间四边形,∴A点不在平面BCD上,而C平面BCD, ∴AC过平面BCD外一点A与平面BCD内一点C, 又∵BD平面BCD,且CBD.∴AC与BD是异面直线.(2)解如图,∵E,F分别为AB,BC的中点,∴EF//AC,且EF=同理HG//AC,且HG=
212
AC.AC.∴EF平行且相等HG,∴EFGH是平行四边形.又∵F,G分别为BC,CD的中点,∴FG//BD,∴∠EFG是异面直线AC与BD所成的角.o
∵AC⊥BD,∴∠EFG=90.∴EFGH是矩形.(3)作法取BD中点E,AC中点F,连EF,则EF即为所求.4.答案:假设BD、AE共面于,则点A、E、B、D都在平面 ∵Aa,Da,∴ a .∵Pa,P .∵Pb,Bb,Pc,Ec.∴ b ,c ,这与a、b、c∴BD、AE5.证明(1):连结AC,BD,∵E,F是ABC的边AB,BC上的中点,∴EF//AC,同理,HG//AC,∴EF//HG,同理,EH//FG,所以,四边形EFGH证明(2):由(1)四边形EFGH∵EF//AC,EH//BD,∴由AC⊥BD得,EFEH,∴EFGH为矩形.解(3):由(1)四边形EFGH∵BD=2,AC=6,∴EF
2AC3,EH
BD
1∴由平行四边形的对角线的性质 EGHF2(EF
EH)20.B
D解(4):由(1)四边形EFGH∵BD=4,AC=6,∴EF
又∵EF//AC,EH//BD,AC、BD成30º角,∴EF、EH成30º角,AC3,EH
BD
2∴四边形EFGH的面积 SEFEHsin30
3.解(5):分别取AC与BD的中点M、N,连接MN、MB、MD、NA、NC,∵AB=BC=CD=DA=AC=BD=2,∴MB=MD=NA=NC=3 ∴MNAC,MNBD,∴MN是AC与BD的公垂线段 且MN
MB
NB
2∴AC与BD间的距离为2.6.解:取BD中点G,连结EG,FG,EF,∵E,F分别是AB,CD的中点,∴EG//AD,FG//BC,且EG
2AD1,FG
BC1,∴异面直线AD,BC所成的角即为EG,FG所成的角,EGFGEF
2EGFG
在EGF中,cosEGF
,G
F
D
∴EGF120,异面直线AD,BC所成的角为60.
7.解(1)如图,连结BD,A1D,∵ABCD-A1B1C1D1是正方体,∴DD1平行且相等BB1.∴DBB1D1为平行四边形,∴BD//B1D1.∴A1B,BD,A1D是全等的正方形的对角线.∴A1B=BD=A1D,△A1BD是正三角形,∴∠A1BD=60,∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角.∴A1B与B1D1成角为60o.(2)连BD交AC于O,取DD1 中点E,连EO,EA,EC.∵O为BD中点,∴OE//BD1.∵∠EDA=90o=∠EDC,ED=ED,AD=DC,∴△EDA≌△EDC,∴EA=EC.在等腰△EAC中,∵O是AC的中点,∴EO⊥AC,∴∠EOA=90o.又∴∠EOA是异面直线AC与BD1所成角,∴AC与BD1成角90.8.解(1)如图,连结BD,A1D,∵ABCD-A1B1C1D1是正方体,∴DD1平行且相等BB1.∴DBB1D1为平行四边形,∴BD//B1D1.∴A1B,BD,A1D是全等的正方形的对角线.∴A1B=BD=A1D,△A1BD是正三角形, ∴∠A1BD=60o,∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角.∴A1B与B1D1成角为60o.(2)连BD交AC于O,取DD1 中点E,连EO,EA,EC.∵O为BD中点,∴OE//BD1.∵∠EDA=90o=∠EDC,ED=ED,AD=DC,∴△EDA≌△EDC,∴EA=EC.o
在等腰△EAC中,∵O是AC的中点,∴EO⊥AC,∴∠EOA=90.又∴∠EOA是异面直线AC与BD1所成角,∴AC与BD成角90o.9.略证(1)取PD的中点H,连接AH,NH//DC,NH
12DC
o
o
C
NH//AM,NHAMAMNH为平行四边形 MN//AH,MNPAD,AHPADMN//PAD
解(2): 连接AC并取其中点为O,连接OM、ON,则OM平行且等于BC的一半,ON平行且等
于PA的一半,所以ONM就是异面直线PA与MN所成的角,由
MNBC
4,PAOM=2,ON=
所以ONM300,即异面直线PA与MN成30010.略证:作MT//AB,NH//AB分别交BC、BE于T、H点
AMFNCMT≌BNHMTNH
从而有MNHT为平行四边形MN//THMN//CBE
E
第四篇:立体几何的平行与证明问题
立体几何
1.知识网络
一、经典例题剖析
考点一 点线面的位置关系
1、设l是直线,a,β是两个不同的平面()
A.若l∥a,l∥β,则a∥β B.若l∥a,l⊥β,则a⊥β
C.若a⊥β,l⊥a,则l⊥β D.若a⊥β, l∥a,则l⊥β
2、下列命题正确的是()
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行
3、已知空间三条直线l、m、n.若l与m异面,且l与n异面,则()
A.m与n异面.B.m与n相交.C.m与n平行.D.m与n异面、相交、平行均有可能.4、(2013年高考江西卷(文15))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为
_____________.D
1CB
考点二证明平行关系
5、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,D C
BDE。求证: AC1//平面
6、(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O
为底面中心, A1O⊥平面ABCD, ABAA1
A
(Ⅰ)证明: A1BD //平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的体积.考点三证明垂直问题
7、(2013年高考辽宁卷(文))
如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(I)求证:BC平面PAC;
(II)设Q为PA的中点,G为AOC的重心,求证:QG//平面PBC.8、已知正方体ABCDA1BC11D1,O是底ABCD对角线的交点.D1AD
BBC
1求证:(1)C1O∥面AB1D1;(2)AC面AB1D1.1
C
综合练习:
9、(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC中,D,E分别是AB,AC
边上的点,ADAE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图5所示的三棱锥ABCF,其中BC
.(1)证明:DE//平面BCF;(2)证明:CF平面ABF;
图
410、如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=证明:PQ⊥平面DCQ;
PD.
2AC平面B'D'DB;BD'
平面ACB'.11、正方体ABCDA'B'C'D'中,求证:(1)(2)
第五篇:立体几何中的最值问题
立体几何中的最值问题
上犹中学数学教研组刘道生
普通高等学校招生全国统一考试新课程标准数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成。立体几何主要研究空间中点、线、面之间的位置关系,查遍近几年全国各省市的高考题中,与空间图形有关的线段、角、距离、面积、体积等最值问题常常在高考试题中出现,并且成增长趋势。下面举例说明解决这类问题的常用方法。
策略
一、公理与定义法
例
1、在正四棱锥S-ABCD中,SO⊥平面ABCD于O,SO=2,S
底面边长为2,点P、Q分别在线段BD、SC上移动,则P、Q两点的最短距离为()B
A.55 B.255 C.2D.1【解析】如图1,由于点P、Q分别在线段BD、SC上移动,先让点P在BD上固定,Q在SC上移动,当OQ最小时,PQ最小。过O作OQ⊥SC,在Rt△SOC中,OQ
P在BD上运动,且当P运动到点O时,PQ最小,2。又
5等于OQ的长为2,也就是异面直线BD和SC的 5
公垂线段的长。故选B。
策略二建立函数法
例2正ABC的边长为a,沿BC的平行线PQ折叠,使平面APQ平面BCQP,求四棱锥的棱AB取得最小值时,四棱锥ABCQP的体积。
分析:棱AB的长是由A点到PQ的距离变化而变化,因此我们可建立棱AB与点A到PQ的距离的一个函数关系式,从而求出棱AB的最小值,进而求出体积。
【解析】如图所示,取PQ中点o,显然AOPQ,即AOPQ
由平面APQ平面BCQP,则AO平面BCQP,如图建立直角坐标系Oxyz,设
3
1,得 AOx,因正ABC的边长为a,易知A0,0,x,O0,0,0,Bax,a,022311
AA0,0,xax,a,0ax,a,x 2222
3125
2ax22x2axa22xaxaa2248
即当x
3a时,ABmina 4
423113133a2SBCPQAOaaa 33442464
VABCPQ
评注:对于图形的翻折问题,关健是利用翻折前后不变的数量关系和图形关系;同时还
要仔细观察翻折前后图形的性质。很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值。策略三;解不等式法
例3求半径为R的球内接正三棱锥体积的最大值。
分析:要使球内接正三棱锥的体积最大,则需正三棱锥的边或高最大,而高过球心,则可寻球高与半径之间的关系。
【解析】如右图所示,设正三棱锥高O1A=h,底面边长为a由正三棱锥性质可知O1B
又知OA=OB=R则在RtABC中,2a)R2(hR)2 a23h(2Rh)
3hh2Rh1hhR3 2V=2h(2Rh)
(2R
h)2233
(当且仅当
h4
2Rh,即hR时,取等号)正三棱锥体积最大值为
策略四;变量分析法
例4 如图已知在ABC中,C90,PA⊥平面ABC,AE⊥PB交PB于E,AF⊥PC于F,当AP=AB=2,AEF,当变化时,求三棱锥P-AEF体积的最大值。
分析:的变化是由AC与BC的变化引起的,要求三棱锥P-AEF的体积,则需找到三棱锥P-AEF的底面积和高,高为定值时,底面积最大,则体积最大。
【解析】∵PA⊥平面ABC,BC平面ABC∴ PA⊥BC
又∵BC⊥AC,PA
AC
∴ BC⊥平面PAC,AF平面PAC,∴ BC⊥AF,又∵ AF⊥PC,PCBCC∴AF平面PBC平面PBC,∴AF⊥EF ∴ EF是AE在平面PBC上的射影,∵AE⊥PB,∴EF⊥PB∴ PE⊥平面AEF
在三棱锥P-AEF中,∵AP=AB=2,AE⊥PB,∴PE2,AE2,AF2sin,1112
sin2 EF2cos,VPAEFSAEFPE2sin2cos2
3326
∵0
,∴02,0sin21∴ 当
时,VPAEF取得最大值为
。6
策略五:展开体图法
例5.如图3-1,四面体A-BCD的各面都是锐角三角形,且AB=CD=a,AC=BD=b,AD=BC=c。平面α分别截棱AB、BC、CD、DA于点P、Q、R、S,A
C
则四边形PQRS的周长的最小值是()
A.2a
B.2b
C.2c
D.a+b+c
D
图
5【解析】如图3-2,将四面体的侧面展开成平面图形。由于四面体各
侧面均为锐角三角形,且AB=CD,AC=BD,AD=BC,所以,A与A’、D与D’在四面体中是同一点,且AD//BC//A'D',AB//CD',A、C、A’共线,D、B、D’共线,AA'DD'2BD。又四边形PQRS在展开图中变为折线S’PQRS,S’与S在四面体中是同
一点。因而当P、Q、R在S’S上时,′
′
S'PPQQRRS最小,也就是四边形
SPQRS周长最小。又S'ASA',所以最小值LSS'DD'2BD2b。故选B。策略六 布列方程法
例
6、棱长为2cm的正方形体容器盛满水,把半径为1cm的铜球放入水中刚好被淹没,然后再放入一个铁球,使它淹没水中,要 使流出来的水量最多,这个铁球的半径应 该为多大?
【解析】:过正方形对角线的截面图如图所示,AC12,AO
3ASAOOS1设小球的半径r,tanC1AC
2在AO1D中,AO1r,∴ASAO1O1S∴13rr,解得r23(cm)为所求。
策略
七、极限思想法
【解析】三棱锥P-ABC中,若棱PA=x,其余棱长均为1,探讨x是否有最值;2若正三棱锥底面棱长棱长均为1,探讨其侧棱否有最值。
解析:如图第1题:当P-ABC为三棱锥时,x的最小极限是 P、A重合,取值为0,若PBC绕BC顺时针旋转,PA变大,最大极限是P,A,B,C共面时,PA为菱形ABPC
第2题:若P在底面的射影为O,易知PO越小,侧棱越小。故P、O重合时,侧棱取最小极
PO无穷大时,侧棱也无穷大。可知两题所问均无最值。策略
八、向量运算法
例8.在棱长为1的正方体ABCD-EFGH中,P是AF上的动点,则GP+PB的最小值为_______。
【解析】以A为坐标原点,分别以AB、AD、AE所在直线为x,y,z轴,建立如图4所示
,0,x),的空间直角坐标系,则B(1,0,0),G(1,1,1)。根据题意设P(x,0,x),则BP(x1
GP(x1,1,x1),那么
GPPB2x24x32x22x
122
2211x0
2(x1)20222
2112
x0可以看成x轴正半轴上一点式子(x1)0(x,222
0,0)到xAy平面上两点1
2112,0、,的距离之和,其最小值为。所以0222
2GP+PB的最小值为2
22。2
[规律小结]
建立函数法是一种常用的最值方法,很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值。解题途径很多,在函数建成后,可用一次函数的端点法;二次数的配方法、公试法; 有界函数界值法(如三角函数等)及高阶函数的拐点导数法等。
公理与定义法通常以公理与定义作依据,直接推理问题的最大值与最小值,一般的公理与定理有:两点之间以线段为最短,分居在两异面直线上的两点的连线段中,以它们的公垂线段为短。球面上任意两点间的连线中以过这两点与球心的平面所得圆的劣弧长为最短等。如果直接建立函数关系求之比较困难,而运用两异面直线公垂线段最短则是解决问题的捷径。
解不等式法是解最值问题的常用方法、在立体几何中同样可利用不等式的性质和一些变
a2b
2ab量的特殊不等关系求解:如
ab
ab
最小角定理所建立的不等关系2
等等。
展开体图法是求立体几何最值的一种特殊方法,也是一种常用的方法,它可将几何题表面展开,也可将几何体内部的某些满足条件的部分面展开成平面,这样能使求解问题,变得十分直观,由难化易。
变量分析法是我们要透过现象看本质,在几何体中的点、线、面,哪些在动,哪些不动,要分析透彻,明白它们之间的相互关系,从而转化成求某些线段或角等一些量的求解最值总题的方法。
除了上述5种常用方法外,还有一些使用并不普遍的特殊方法,可以让我们达到求解最值问题的目的,这就是:布列方程法、极限思想法、向量计算法等等其各法的特点与普遍性,大家可以通过前述实例感受其精彩内涵与真理所在。
在解题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次从本文所标定的方法顺序思考,必能找到解题的途径。