第一篇:07必修1,函数提高信息迁移题S
函数提高-信息迁移题
已知函数 f(x)的定义域为 D,且 f(x)同时满足以下条件:
(Ⅰ)f(x)在 D 上单调递增或单调递减(Ⅱ)存在区间[a ,b ] D,使得 f(x)在区间 [a ,b ]上的值域是[a ,b ]
那么我们把函数 f(x)(x D)叫闭函数
(1)求闭函数 y =3x 符合条件(2)的区间 [a ,b ];(2)判断函数 y =2x-lgx 是不是闭函数?若是,请说明理由,并找出区间 [a ,b ];若不是,请说明理由;(3)若 y = k + 2 x 是闭函数,求实数 k 的取值范围.
如果)(x f 在某个区间 I 内满足:
对任意的)2()]()([21, ,2 12 1 2 1x xf x f x f I x x 都有,则称)(x f 在 I 上为下凸函数;已知函数.)(2x ax x f
(Ⅰ)证明:当 0 a 时,)(x f 在 R 上为下凸函数;
(Ⅱ)若)1 , 0( x 时,, 1 |)(| x f 求实数 a 的取值范围
将奇函数的图像关于原点(即)对称这一性质进行拓广,有下面的结论:
① 函数 满足 的充要条件是 的图像关于点成中心对称. ② 函数 满足 为奇函数的充要条件是 的图像关于点 成中心对称(注:若 不属于 的定义域时,则 不存在). 利用上述结论完成下列各题:
(1)已知()为实数,试问函数 的图像是否关于某一点成中心对称?若是,求出对称中心的坐标并说明理由;若不是,请说明理由.(2)若函数 的图像关于点 成中心对称,求 的值。
对于函数1 2(),(),()f x f x h x,如果存在实数 , a b 使得1 2()()()h x a f x b f x ,那么称()h x 为1 2(),()f x f x 的生成函数.(1)下面给的函数,()h x 是否分别为1 2(),()f x f x 的生成函数?并说明理由; 1)(, 1)(,)(2 2221 x x x h x x x f x x x f ;(2)设1 2 2 12()log ,()log , 2, 1 f x x f x x a b ,生成函数()h x.若不等式(4)(2)0 h x th x
在 [2, 4] x 上有解,求实数 t 的取值范围;(3)设1 21()(0),()(0)f x x x f x xx ,取 0, 0 a b ,生成函数()h x 图像的最低点坐标为(2, 8).若对于任意正实数2 1 ,xx 且1 21 x x .试问是否存在最大的常数 m,使 m x h x h )()(2 1恒成立?如果存在,求出这个 m 的值;如果不存在,请说明理由.(0,0)()y f x ()()2 f a x f a x b ()y f x (,)a b()y f x ()()()F x f x a f a ()y f x (,())a f a a x()f am 1 m ()1x mf xx 2()| | | 3| 43f x x x t x 2 2,3 3f t
第二篇:高一数学必修1函数教案
第二章 函数
§2.1 函数
教学目的:(1)学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 一 函数的有关概念 1.函数的概念:
设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数(function). 记作: y=f(x),x∈A.
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:
○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x. 2. 构成函数的二要素: 定义域、对应法则
值域被定义域和对应法则完全确定 3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 二 典型例题 求解函数定义域值域及对应法则 课本P32 例1,2,3 求下列函数的定义域
14x2 F(x)= F(x)=
x/x/x1 F(x)=111x F(x)=x24x5
巩固练习P33 练习A中4,5 说明:○1 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○2 函数的定义域、值域要写成集合或区间的形式. 2.判断两个函数是否为同一函数
○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:
○1 判断下列函数f(x)与g(x)是否表示同一个函数
(1)f(x)=(x1)0 ;g(x)= 1
(2)f(x)= x; g(x)=x2
(3)f(x)= x;f(x)=(x1)(4)f(x)= | x | ;g(x)= 2x2
三 映射与函数
教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;(2)结合简单的对应图示,了解一一映射的概念. 教学重点难点:映射的概念及一一映射的概念. 复习初中已经遇到过的对应:
1. 对于任何一个实数a,数轴上都有唯一的点P 和它对应; 2. 对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;
3. 对于任意一个三角形,都有唯一确定的面积和它对应; 4. 某影院的某场电影的每一张电影票有唯一确定的座位与它对应; 5. 函数的概念.
映射 定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B 为从集合A 到集合B 的一个映射(mapping).记作“f:A→B”。象与原象的定义与区分
一一对应关系: 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,就称这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。(结合P35的例7解释说明)
说明:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
例题分析:下列哪些对应是从集合A 到集合B 的映射?
(1)A={P | P 是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P 是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x 是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)A={x | x 是新华中学的班级},B={x | x 是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:将(3)中的对应关系f 改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A 是从集合B 到集合A 的映射吗? 四 函数的表示法
教学目的:(1)明确函数的三种表示方法;
(2)通过具体实例,了解简单的分段函数,并能简单应用; 教学重点难点:函数的三种表示方法,分段函数的概念及分段函 数的表示及其图象.
复习:函数的概念;
常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.
(一)典型例题
例 1.某种笔记本的单价是5 元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x).
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略)注意:
○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2 解析法:必须注明函数的定义域; ○3 图象法:是否连线;
○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 例 3.画出函数y = | x | . 解:(略)
巩固练习: P41练习A 3,6 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系.
五 分段函数 定义: 例5讲解
练习P43练习A 1(2),2(2)
注意:分段函数的解析式不能写成几个不同的方程,而写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
第三篇:人教版数学必修1函数教案
第二章 函数
§2.1 函数 一 函数的有关概念 1.函数的概念:
设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数(function). 记作: y=f(x),x∈A.
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:
○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x.
2. 构成函数的二要素: 定义域、对应法则
值域被定义域和对应法则完全确定 3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 二 典型例题 求解函数定义域值域及对应法则 课本P32 例1,2,3 求下列函数的定义域
14x2 F(x)= F(x)=
x/x/x1 F(x)=111x F(x)=x24x5
巩固练习P33 练习A中4,5 说明:○1 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○2 函数的定义域、值域要写成集合或区间的形式. 2.判断两个函数是否为同一函数
○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:
○1 判断下列函数f(x)与g(x)是否表示同一个函数
(1)f(x)=(x1);g(x)= 1
(2)f(x)= x; g(x)=x2
2(3)f(x)= x;f(x)=(x1)
(4)f(x)= | x | ;g(x)= 20x2
三 映射与函数
映射 定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B 为从集合A 到集合B 的一个映射(mapping).记作“f:A→B”。象与原象的定义与区分
一一对应关系: 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,就称这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。(结合P35的例7解释说明)
说明:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
例题分析:下列哪些对应是从集合A 到集合B 的映射?
(1)A={P | P 是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P 是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x 是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x | x 是新华中学的班级},B={x | x 是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:将(3)中的对应关系f 改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A 是从集合B 到集合A 的映射吗? 四 函数的表示法 复习:函数的概念;
常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.
(一)典型例题
例 1.某种笔记本的单价是5 元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x).
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略)注意:
○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2 解析法:必须注明函数的定义域; ○3 图象法:是否连线; ○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 例 3.画出函数y = | x | . 解:(略)
巩固练习: P41练习A 3,6 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系.
五 分段函数 定义: 例5讲解
练习P43练习A 1(2),2(2)
注意:分段函数的解析式不能写成几个不同的方程,而写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
第四篇:必修1函数单调性说课稿
必修1《1.3.1 函数的单调性》说课稿
酒泉中学 马长青
一.教学内容分析
1.本课定位与内容
本节课选自《普通高中课程标准实验教科书数学必修1》A版第一章第三节函数的基本性质第一小节函数的单调性与最大(小)值,本节课内容教材主要学习函数的单调性的概念,判断函数的单调性和应用定义证明函数的单调性,共2课时,本节课为第一课时。
2.教材的地位和作用
从单调性本身看,学生的学习分为三个层面,首先是在初中学习了一次函数、二次函数、反比例函数图象的基础上对函数的增减性有一个初步的感性认识,其次在高一对单调性进行严格定义,最后在高三从导数的角度再次研究单调性。本节课的学习处于对单调性学习的第二层面,通过图象归纳、抽象出单调性的准确定义,并在高中首次经历代数的严格证明,是对初中学习的一次升华。
从本节的教学看,在此学习单调性是对函数概念的延续和拓展,对进一步探索、研究函数的其他性质有着示范性的作用,从本章的教学看,本节课的学习是后续研究指数函数、对数函数内容的基础。
从函数知识网络看,单调性起着承上启下的作用,一方面,是初中学习内容的深化,使学生对函数单调性从感性认识提高到理性认识。另一方面,函数的单调性为后面学习指数函数、对数函数、三角函数及数列这种特殊的函数打下基础,与不等式、求函数的值域、最值,导数等都有着紧密的联系。
从高中数学学习看,函数的单调性是培养学生数形结合思想的重要内容,也是研究变量的变化范围的有力工具。3.教学目标
根据本课教材特点、课程标准对本节课的教学要求以及学生的认知水平,教学目标确定为: 知识与技能:
(1)从形与数两方面理解单调性的概念
(2)初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法
(3)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力 过程与方法:
(1)通过对函数单调性定义的探究,渗透数形结合思想方法(2)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。情感态度价值观:
通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;领会用运动的观点去观察分析事物的方法 4.教学重难点
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但是要用准确的符号语言去刻画图象的增减性,从感性上升到理性对高一的学生来说比较困难。因此,本节课的教学难点是函数单调性的概念形成。
二.学生情况分析
知识结构
学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,能从图象的直观变化,学生能得到函数增减性。
能力结构
通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。
学习心理
函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。
本班学生特点
本班为酒泉中学高一(4)班,学生数学素养较好。三.教学模式
《普通高中数学课程标准(实验)》指出:“高中数学课程应倡导自主探索等学习数学的方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的‘再创造’过程。”
因此,根据教学内容和学生的认知、能力水平,本节课作为新授课主要采取教师启发式教学法和学生探究式教学法。以设置情境、设问和疑问进行层层引导,激发学生积极思考,逐步将感性认识提升到理性认识,培养和发展学生的抽象思维能力。引导学生提出疑问,进行思考,从而创造性的解决问题,最终形成概念,培养学生的创造性思维和批判精神。
五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新 四.教学设计
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新
单调性的概念是本节课的重点,而形成过程则是本节课的难点,为了突破这一难点,让学生能够充分感受单调性概念的形成过程,经历观察发现、抽象概括,自主建构单调性概念的过程,本节课设置了前三个环节,后两个环节的设计,是为了使学生对函数单调性认识的再次深化。
(一)创设情境,引入新课
数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本节课的开始,我作了这样的情境创设,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。
提出问题1:分别作出函数y=x,二次函数y=2x,y=-2x和y=x的图象,并且观察函数变化规律?
2首先引导学生观察两个一次函数图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小。然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.二次函数的增减性要分段说明,进而提出问题:二次函数是增函数还是减函数? 进一步讨论得出:增减性是函数的局部性质
据此,学生已经对单调性有了直观认识,紧接着,我提出问题二:能否用自己的理解说说什么是增函数,什么是减函数? 结合增减性是局部性质,学生会用直观描述回答:在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。
学生用图象的感性认识初步描述了单调性,下面进一步将学生从感性向理性进行引导
(二)初步探索,概念形成
提出问题三:以y=x+1在(0,+∞)上单调性为例,如何用精确的数学语言来描述函数的单调性?
这是本节课的难点,因此我将概念形成设置了三个阶段 1.提问学生什么是“随着”
经讨论得出,随着是由于当x取一定的值时,y有确定值与之对应,因此x变化时,y会根据法则随着x发生变化
2.如何刻画“增大”?
要表示大小关系,学生会想到取点,比大小,学生也许会用特殊点说明问题,比如x取2、3,2<3,对应的函数值是5<10
提出质疑:这个点的变化能否说明y随着x增大而增大,进一步引导学生从特殊到一般,进入第三阶段,对“任取”的理解。
3.对“任取”的理解
针对特殊值,学生可能会举反例证明其是不充分的,那么应该如何取值呢?学生可能会多取一些,也可能会想到将取值区间任意小,进一步讨论得出“任取”二字。
用对随着的理解再次深化函数概念,用对增大的理解得到要表示大小关系,最后再强调取值的任意性,这样就实现了从“图形语言”到 “文字语言”到 “符号语言”的过渡,实现“形”到“数”的转换,形成了单调性的定义。
得到定义后,再提出如何得到f(x1) (三)概念深化,延伸拓展 通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。 2提出问题四:能否说从这个例子能得到什么结论? 在它的定义域上是减函数? 学生思考、讨论,提出自己观点 学生可能会提出反例,如x1=-1,x2=1 进一步得出结论: 函数在定义域内的两个区间A,B上都是增(减)函数,函数在A∪B上不一定是增(减)函数 教师给出例子进行说明: 进一步提问: 函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数。 学生会提出将函数图象进行变形(如x<0时图象向下平移) 性 回归定义,强调任意 在问题四的背景下解决本题,体会在运动中满足任意性。拓展探究:已知函数 是(-∞,+∞)上的增函数,求a的取值范围.这个问题有一定难度,但是学生在前面集合的学习中已经接触过在运动中求参数a的取值范围,此处可看作是对前面学习的巩固。 (四)证法探究,应用定义 在概念已经完善的基础上,提出例1 例1:证明函数 在(0,+)上是增函数 本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。 学生根据单调性定义进行证明,教师在黑板上书写证明步骤,再引导学生总结证明步骤。 提出例2判断函数在(0,+∞)上的单调性。 根据定义进行判断,体会判断可转化成证明。 课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。 进一步提问:如果把(0,+∞)条件去掉,如何解这道题?为学生提供思考空间。 (五)小结评价,作业创新 从知识、方法两个方面引导学生进行总结。学生回顾函数单调性定义的探究过程;证明、判断函数单调性的方法步骤;数学思想方法。 小结过程使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义。 作业的设计实现了分层,既巩固了基础,又给了学生充足的思考空间。 通过本节课的学习,预计学生能理解单调性的定义,绝大多数学生能按照单调性的证明步骤进行证明,能判断函数的单调性,本节课的评价方式为课堂反馈、教师评价、学生自评相结合。 在本节课的设计中,我有一些新的尝试,在教学过程中,创设一个探索的学习环境,通过设计一系列问题,使概念得到形成和深化,学生亲身经历数学概念的产生与发展过程,从而逐步把握概念的实质内涵,深入理解概念。在情境设置中,严格按照课标要求以二次函数y=x+1为例,经历画图、描述图象、找单调区间、形成单调性定义、证明其单调性的过程,将学生对单调性的认识从感性上升到理性,并将定义进行应用。五.板书设计 六.课堂评价 七.资源开发 2 初三数学提高题 1、点D、E分别在△ABC的边AB、AC上,BE、CD相交于点F,设S四边形EADF=S1,S△BDF=S2,S△BCF=S3,S△CEF=S4,则S1S3与S2S4的大小关系为() A、S1S3 2、如图,正方形ABCD的边长为1,点P、Q是其内两点,其∠PAQ=∠PCQ=45°,求S△PAB+S△PCQ+S△QAD的值.AD BC3、如图,△ABC中,∠BAC=90°,AB=2AC.点P在△ABC内,且PA=,PB=5,PC=2,求△ABC的面积.B AC 参考答案: 1、C; 2、1; 3、2736 2第五篇:初三数学提高题7