第一篇:管片厂总体工艺设计探讨论文
1总体工艺设计原则
1)根据项目产品的生产需求及特点设计项目工艺方案,进行合理的功能分区,满足工艺流程和生产建造的要求,实现生产纲领,力求工艺先进科学,流程设计合理、流畅;2)节约用地,充分利用场地条件,合理紧凑布置建构筑物;选择便捷的运输线路和物流线路,减少迂回和运输成本;3)积极选用工艺装备技术先进的高效节能型设备,在保障项目生产顺利进行,确保项目产品质量的同时,降低产品生产能耗,提高项目收益;4)采取有效措施加强物料检验、管理及循环利用,保证物料的质量,减少物料资源的浪费;5)设计方案中充分考虑采用减少“三废”污染的先进工艺和设施,做到环保设施与工程建设“三同时”,实现洁净生产;6)严格遵循国家有关政策、标准及设计的规程规范;7)考虑到工程远期发展的可能性,留有发展空间。
2管片厂区域划分
管片厂根据生产能力和管片存储情况进行设计,一般情况下,管片厂应至少包含以下区域。1)核心生产区:包含混凝土制备区、钢筋笼制作区、管片成型区,各种原材料合理布置在管片的核心生产区,通过科学合理的工艺布置,顺畅地进入生产工序。2)成品存放区:包含养护水池和成品堆放场地,对于一般管片厂而言,成品堆放场地为管片厂月产能的3倍左右,或者更大。3)辅助设备设施区:如锅炉房、电子汽车衡等。)管片厂设计时一般应考虑保留充足的职工宿舍和办公场所等。
3管片厂建厂规模的确定
管片厂建厂规模应根据所属地区的管片需求情况结合市场定位来确定,对于目前国内主流的自动化流水线而言,主要包含10套模具的“1+3”型流水线和12套模具的“2+3”型流水线,其日产能分别可达到30环和40环。目前也有很多企业建设2条流水线或者采用1条流水线外加地模组织生产。可以根据生产规模确定选用一条生产线或者多条生产线,也有部分生产厂选择地模生产或者一条生产线外加一条地模生产线来组织生产。在设计多条生产线时,应根据设计产能充分考虑配套设施与产能的适应性,如水养池的大小、布局,自生产车间至管片水养池倒运设备的配置,管片入池、出池设备配备,管片中转倒运与发运设备的配备以及原材料的存放和周转场地等。
4管片厂总工艺布置
4.1管片厂总工艺布置的原则
1)整体综合原则,在总工艺布置时,将对设施布置和生产流程有影响的所有因素进行综合考虑,以达到总工艺布置最优的目的。2)物流顺畅、半成品倒运距离最小的原则,在总工艺布置的时候要考虑原材料和办成品的倒运线路,达到材料运输流畅、避免产生二次倒运,减少半成品倒运距离。3)流动性原则,设施布置应使在制品生产过程中流动顺畅,消除无谓停滞,力求使生产流程连续化。4)柔性原则,考虑各种因素变化可能带来的影响,特别是要考虑部分“瓶颈”工序,增加设备来完善产能的要求,便于后续的调整和变更。5)安全原则,总工艺布置必须考虑充足的人员操作空间,消除交叉作业隐患,满足安全性需求。
4.2管片生产工艺
1)钢筋笼制作工艺钢筋笼制作过程中要注意以下几点:(1)保证钢筋搭接长度符合要求,主要有焊缝长度、绑扎搭接长度等;(2)焊接主筋时不能烧伤主筋,焊渣需及时进行清理;(3)保证主筋顺直、主筋和箍筋、螺旋筋间距符合要求,做好间距和焊接,确保钢筋笼的质量[1]。4.3考虑水、电、气和运输道路影响因素在总工艺布置设计阶段应充分考虑管片生产各能源供应线路和管道的布置,力求各种管线节约、有序,还应充分考虑消防的要求。厂内运输道路一般应选择环形道路,方便大型车辆进出,避免出现车辆掉头或者无法通过情况的出现。
5结论
管片厂总体工艺设计是一个综合工艺流程,需综合各专业技术根据现有场地布局完成的复杂设计过程,需要经过反复推敲修改,并且经过各专业相关人员研究、论证方可确定的综合的指导性的实施方案。做好管片厂总体工艺设计和方案优化对保证管片厂生产流程的顺畅性具有重要作用,论文对如何做好总体工艺设计进行了简要论述,以期为相关工作提供参考。
参考文献:
【1】李涛.盾构隧道混凝土管片预制工艺及质量控制[J].市政技术,2011,29(3):125-127.
第二篇:管片厂参观实习报告
管片厂参观实习报告
土木1201 张文杰 31203096 2015年5月11日,在虞老师的带领下我们土木1201班和1202班的同学有幸参观了位于德清的管片制造厂。书上学来终觉浅,在实地参观了管片厂后,我们才对土木有了一个直观的认识。
盾构管片是盾构施工的主要装配构件,是隧道的最内层屏障,承担着抵抗土层压力、地下水压力以及一些特殊荷载的作用。盾构管片是盾构法隧道的永久衬砌结构,盾构管片质量直接关系到隧道的整体质量和安全,影响隧道的防水性能及耐久性能 盾构管片的拼装方式: 1.拼装成环方式
盾构推进结束后,迅速拼装管片成环。除特殊场合外,大都采取错缝拼装。在联络通道处的管片有时采用通缝拼装。2.拼装顺序
一般从下部的标准块(A型)管片开始,依次左右两侧交替安装标准管片,然后拼装邻接块(B型)管片,最后安装封顶块(K型)管片。3.盾构千斤顶操作
拼装时,若盾构千斤顶同时全部缩回,则在开挖面土压的作用下盾构会后退,开挖面将不稳定,管片拼装空间也将难以保证。因此,随管片拼装顺序分别缩收和顶上盾构千斤顶非常重要。4.紧固连接螺栓
先紧固环向(管片之间)连接螺栓,后紧固轴向(环与环之间)连接螺栓。采用扭矩扳手紧固,紧固力取决于螺栓的直径与强度。5.封顶块管片安装方法
封顶块管片安装在邻接管片之间,为了不发生管片损伤、剥离,必须充分注意正确地插入封顶块管片。6.连接螺栓再紧固
一环管片拼装后,利用全部千斤顶均匀施加压力,充分紧固轴向连接螺栓。
盾构继续掘进后,在盾构千斤顶推力、脱出盾尾后土(水)压力的作用下衬砌产生变形,拼装时紧固的连接螺栓会松弛。为此,待推进到千斤顶推力影响不到的位置后,用扭矩扳手等,再一次紧固连接螺栓。再紧固的位置随隧道外径、隧道线形、管片种类、地质条件等而不同。
到达管片厂后,我们按次序下车,在管片厂门口集合,然后在老师和工人师傅的带领下,我们按照标准佩戴了安全帽,安全第一是在哪都不变的真理,然后同学们有序的进入了管片厂。我们首先参观的是管片厂的一处厂房,扑面而来的火热气息伴随着机器巨大的轰鸣声传入耳中,工人们坚守在自己的岗位上。
老师和工人师傅给我们认真讲解了管片厂的工作内容和管理机制,让人映像深刻,我们还参观了水泥养护池:
水泥养护池池水很清澈,据工人师傅说是因为水呈碱性的缘故!如果刚浇筑的水泥暴露在空气中的话,待其成型时,其强度会受很大的影响,相反,如果置于水中养护一段时间,其强度会大大提高。
这是管片厂的后门处
这次能有机会去管片厂实习,我感到非常荣幸。虽然只有一下午的时间,但是在这段时间里,在老师和工人师傅的帮助和指导下,对于一些平常理论的东西,有了感性的认识,感觉受益匪浅。从此次参观中,我体会到实际工作与我们在课本上所学的内容还是有一定距离的,我们学的知识远远不够,因此更加激发我们对其他有关知识的了解,深入的去学习。只是作为一个工科的学生对一个企业来说还不能深入对其了解,只是粗略的了解一下产品工艺的简单流程,和一些先进的与我们专业相关的专业的工业技术,当然还包括企业的运作流程。这对我们以后的学习和工作有很大的帮助,我在此感谢学院的领导和老师能给我们这样一次学习的机会,也感谢老师和各位工人师傅的的悉心指导
下午的参观实习很快结束了,该次实习,真正到达土木工程的第一前线,了解了我国目前制造业的发展状况也粗步了解了管片制造也的发展趋势在新的世纪里,科学技术必将以更快的速度发展,更快更紧密得融合到各个领域中,而这一切都将大大拓宽管片制造业的发展方向.它的发展趋势可以归结为“四个化”:柔性化、灵捷化、智能化、信息化.即使工艺装备与工艺路线能适用于生产各种产品的需要,能适用于迅速更换工艺、更换产品的需要,使其与环境协调的柔性,使生产推向市场的时间最短且使得企业生产制造灵活多变的灵捷化,还有使制造过程物耗,人耗大大降低,高自动化生产,追求人的智能于机器只能高度结合的智能化以及主要使信息借助于物质和能量的力量生产出价值的信息化.管片制造的四个发展趋势不是单独的,它们是有机的结合在一起的,是相互依赖,相互促进的。同时由于学技术的不断进步,也将会使它出现新的发展方向。前面我们看到的是土木工程其自身线上的发展,然而,作为社会发展的一个部分,它也将和其它的行业更广泛的结合。
第三篇:化妆品工艺论文设计
化妆品工艺论文设计
科
目
化妆品工艺学
院
系
化学与环境工程学院 专
业
化学工程与工艺081班
姓
名
杨
玲
学
号
081301126 指导老师
王 婷 婷
摘
要
化妆品作为一种时尚产品,其发展方向是日趋倾向于天然性、疗效性和多功能性。以科技为先导,采用新工艺、新设备迅速推出新产品,是近年来国际化妆品工业发展的一大趋势。化妆品的工艺、设备及包装容器近些年有了长足发展,其中低能乳化法是目前国际上流行的一种生产工艺。低能乳化法是以机械强乳化装置达到乳化的效果。以机械乳化代替化学乳化,可减少表面活性剂对人体皮肤的刺激。水-油-水多相乳化法是一种较佳的生产工艺。以该法制得的膏体由无数超薄微胶囊构成,这种微胶囊的壁厚仅为0.01微米,使用时遇压后瞬间破裂,内含的香精和天然添加剂即时流出,滋润皮肤。这种膏体对皮肤有较强的渗透力,因而可被皮肤迅速吸收,并能在皮肤表面形成一层液晶保护膜,对人体安全无刺激。
关键词:化妆品、天然性、多功能性、低能乳化法、渗透力
川楝子,佛手柑,白术各五十克 ,八月柞,木蝴蝶,龟板,白芍,沉香,高丽参各三十克,泽泻,黄芩,乌术粉各二十克,茯苓,柴胡,金精粉各十克,白砂糖七百克,蜂蜜五百克,猪苦胆汁3个.配法:上药为细面,先把胆汁,蜂蜜,白砂糖放在锅里先熬,把水熬净,再放入药面拌匀,倒瓷盆里,再放锅里蒸30分钟,拿出冷凉做丸(丸重九克),一日三次,一次一丸,用麦饭石泡开水饭后送服
乳化护肤品生产工艺
一、引言
皮肤与化妆品:化妆品大多涂在人的皮肤表面,与人的皮肤长时间连续接触,配方合理、与皮肤亲和性好、使用安全的化妆品能起到清洁、保护、美化肌肤的作用;相反使用不当或者使用质量低劣的化妆品,会引起皮肤炎症或其他皮肤疾病。因此,为了更好的研究化妆品功效,开发与皮肤亲和性好、安全、有效的化妆品,同时作为消费者的我们能正确的选择适合自己肌肤特性的化妆品很重要,这就需要我们去学习了解化妆品工艺和配方。在此,我主要介绍有关乳化护肤品的生产工艺。
二、论文内容
(一)生产程序
(1)油相的制备 将油、脂、蜡、乳化剂和其他油溶性成分加入夹套溶解锅内,开启蒸汽加热,在不断搅拌条件下加热至70-75℃,使其充分熔化或溶解均匀待用。要避免过度加热和长时间加热以防止原料成分氧化变质。容易氧化的油分、防腐剂和乳化剂等可在乳化之前加入油相,溶解均匀,即可进行乳化。
(2)水相的制备 先将去离子水加人夹套溶解锅中,水溶性成分如甘油、丙二醇、山梨醇等保湿剂,碱类,水溶性乳化剂等加人其中,搅拌下加热至90-100℃,维持20min灭菌,然后冷却至70~80℃待用。如配方中含有水溶性聚合物,应单独配制,将其溶解在水中,在室温下充分搅拌使其均匀溶胀,防止结团,如有必要可进行均质,在乳化前加入水相。要避免长时间加热,以免引起粘度变化。为补充加热和乳化时挥发掉的水分,可按配方多加3%~5%的水,精确数量可在第一批制成后分析成品水分而求得。
(3)乳化和冷却
上述油相和水相原料通过过滤器按照一定的顺序加入乳化锅内,在一定的温度(如70-80℃)条件下,进行一定时间的搅拌和乳化。乳化过程中,油相和水相的添加方法(油相加入水相或水相加入油相)、添加的速度、搅拌条件、乳化温度和时间、乳化器的结构和种类等对乳化体粒子的形状及其分布状态都有很大影响。均质的速度和时间因不同的乳化体系而异。含有水溶性聚合物的体系、均质的速度和时间应加以严格控制,以免过度剪切,破坏,聚合物的结构,造成不可逆的变化,改变体系的流变性质。如配方中含有维生素或热敏的添加剂,则在乳化后较低温下加入,以确保其活性,但应注意其溶解性能。
乳化后,乳化体系要冷却到接近室温。卸料温度取决于乳化体系的软化温度,一般应使其借助自身的重力,能从乳化锅内流出为宜。当然也可用泵抽出或用加压空气压出。冷却方式一般是将冷却水通人乳化锅的夹套内,边搅拌,边冷却。冷却速度,冷却时的剪切应力,终点温度等对乳化剂体系的粒子大小和分布都有影响,必须根据不同乳化体系,选择最优条件。特别是从实验室小试转人大规模工业化生产时尤为重要。
(二)乳化剂的加入方法
(1)乳化剂溶于水中的方法
这种方法是将乳化剂直接溶解于水中,然后在激烈搅拌作用下慢慢地把 油加入水中,制成油/水型乳化体。(2)乳化剂溶于油中的方法
将乳化剂溶于油相(用非离子表面活性剂作乳化剂时,一般用这种方法),有2种方法可得到乳化体。
①将乳化剂和油脂的混合物直接加入水中形成为油/水型乳化体。
②将乳化剂溶于油中,将水相加入油脂混合物中,开始时形成为水/油型乳化体,当加入多量的水后,粘度突然下降,转相变型为油/水型乳化体。(3)乳化剂分别溶解的方法
这种方法是将水溶性乳化剂溶于水中,油溶性乳化剂溶于油中,再把水相加人油相中,开始形成水/油型乳化体,当加人多量的水后,粘度突然下降,转相变型为油/水型乳化体。如果做成W/O型乳化体,先将油相加入水相生成O/W型乳化体,再经转相生成W/O型乳化体。(4)初生皂法
用皂类稳定的O/W型或W/O型乳化体都可以用这个方法来制备。将脂肪酸类溶于油中,碱类溶于水中,加热后混合并搅拌,2相接触在界面上发生中和反应生成肥皂,起乳化作用。这种方法能得到稳定的乳化体。例如硬脂酸钾皂制成的雪花膏,硬脂酸胺皂制成的膏霜、奶液等。(5)交替加液的方法
在空的容器里先放人乳化剂,然后边搅拌边少量交替加入油相和水相。这种方法对于乳化植物油脂是比较适宜的,在食品工业中应用较多,在化妆品生产中此法很少应用。
(三)转相的方法
(1)增加外相的转相法 当需制备一个O/W型的乳化体时,可以将水相慢慢加入油相中,开始时由于水相量少,体系容易形成W/O型乳液。随着水相的不断加入,使得油相无法将这许多水相包住,只能发生转相,形成O/W型乳化体。(2)降低温度的转相法
对于用非离子表面活性剂稳定的O/W型乳液,在某一温度点,内相和外相将互相转化,变型成为W/O乳液,这一温度叫做转相温度。由于非离子表面活性剂有浊点的特性,在高于浊点温度时,使非离子表面活性剂与水分子之间的氢键断裂,导致表面活性剂的HLB值下降,即亲水力变弱,从而形成W/O型乳液;当温度低于浊点时,亲水力又恢复,从而形成O/W型乳液。利用这一点可完成转相。一般选择浊点在50-60℃左右的非离子表面活性剂作为乳化剂,将其加入油相中,然后和水相在80℃左右混合,这时形成W/O型乳液。随着搅拌的进行乳化体系降温,当温度降至浊点以下不进行强烈的搅拌,乳化粒子也很容易变小。(3)初生皂法
用皂类稳定的O/W型或W/O型乳化体都可以用这个方法来制备。将脂肪酸类溶于油中,碱类溶于水中,加热后混合并搅拌,2相接触在界面上发生中和反应生成肥皂,起乳化作用。这种方法能得到稳定的乳化体。例如硬脂酸钾皂制成的雪花膏,硬脂酸胺皂制成的膏霜、奶液等。(4)交替加液的方法
在空的容器里先放人乳化剂,然后边搅拌边少量交替加入油相和水相。这种方法对于乳化植物油脂是比较适宜的,在食品工业中应用较多,在化妆晶生产中此法很少应用。(三)转相的方法
(1)增加外相的转相法
当需制备一个O/W型的乳化体时,可以将水相慢慢加入油相中,开始时由于水相量少,体系容易形成W/O型乳液。随着水相的不断加入,使得油相无法将这许多水相包住,只能发生转相,形成O/W型乳化体。
(2)降低温度的转相法
对于用非离子表面活性剂稳定的O/W型乳液,在某一温度点,内相和外相将互相转化,变型成为W/O乳液,这一温度叫做转相温度。由于非离子表面活性剂有浊点的特性,在高于浊点温度时,使非离子表面活性剂与水分子之间的氢键断裂,导致表面活性剂的HLB值下降,即亲水力变弱,从而形成W/O型乳液;当温度低于浊点时,亲水力又恢复,从而形成为O/W型乳液。利用这一点可完成转相。
(3)加入阴离子表面活性剂的转相法
在非离子表面活性剂的体系中,如加入少量的阴离子表面活性剂,将极大提 高乳化体系的浊点。利用这一点可以将浊点在50-60℃的非离子表面活性剂加入油相中,然后和水相在8013左右混合,这时易形成W/O型的乳液,如此时加入少量的阴离子表面活性剂,并加强搅拌,体系将发生转相变成O/W型乳液。
(四)低能乳化法
在通常制造化妆品乳化体的过程中,先要将油相、水相分别加热至75~95℃,然后混合搅拌、冷却,而且冷却水带走的热量是不加利用的,因此在制造乳化体的过程中,能量的消耗是较大的。如果采用低能乳化,大约可节约50%的热能。低能乳化法在间歇操作中一般分为2步进行:
第1步先将部分的水相(B相)和油相分别加热到所需温度,将水相加入油相中,进行均质乳化搅拌,开始乳化体是W/O型,随着B相水的继续加入,变型成为O/W型乳化体,称为浓缩乳化体。
第2步再加入剩余的一部分未经加热而经过紫外线灭菌的去离子水(A相)进行稀释,因为浓缩乳化体的外相是水,所以乳化体的稀释能够顺利完成,此过程中,乳化体的温度下降很快,当A相加完之后,乳化体的温度能下降到50~60C。
(五)搅拌条件
乳化时搅拌愈强烈,乳化剂用量可以愈低。但乳化体颗粒大小与搅拌强度和乳化剂用量均有关系。过分的强烈搅拌对降低颗粒大小并不一定有效,而且易将空气混人。在采用中等搅拌强度时,运用转相办法可以得到细的颗粒,采用桨式或旋桨式搅拌时,应注意不使空气搅人乳化体中。一般情况是,在开始乳化时采用较高速搅拌对乳化有利,在乳化结束而进入冷却阶段后,则以中等速度或慢速搅拌有利,这样可减少混入气泡。如果是膏状产品,则搅拌到固化温度止。如果是液状产品,则一直搅拌至室温。
(六)混合速度
分散相加人的速度和机械搅拌的快慢对乳化效果十分重要,可以形成内相完全分散的良好乳化体系,也可形成乳化不好的混合乳化体系,后者主要是内相加得太快和搅拌效力差所造成。乳化操作的条件影响乳化体的稠度、粘度和乳化稳定性。研究表明,在制备O/W型乳化体时,最好的方法是在激烈的持续搅拌下将水相加入油相中,且高温混合较低温混合好。
在制备W/O型乳化体时,建议在不断搅拌下,将水相慢慢地加到油相中去,可制得内相粒子均匀、稳定性和光泽性好的乳化体。对内相浓·度较高的乳化体系,内相加入的流速应该比内相浓度较低的乳化体系为慢。采用高效的乳化设备较搅拌差的设备在乳化时流速可以快一些。(七)温度控制
制备乳化体时,除了控制搅拌条件外,还要控制温度,包括乳化时与乳化后的温度。
由于温度对乳化剂溶解性和固态油、脂、蜡的熔化等的影响,乳化时温度控制对乳化效果的影响很大。如果温度太低,乳化剂溶解度低,且固态油、脂、蜡未熔化,乳化效果差;温度太高,加热时间长,冷却时间也长,浪费能源,加长生产周期。一般常使油相温度控制高于其熔点10-15℃,而水相温度则稍高于油相温度。通常膏霜类在75~95℃条件下进行乳化。
以上是乳化护肤品的大致生产过程。
完美肌肤是每位女士的追求,如何做到真正的皮肤光滑,水分充 足。选用合适自己乳化护肤品可以让你更加美丽,看起来更年轻,与此同时自信也会倍增。
三、谢辞
在八周的化妆品工艺的学习中,我不再会自我感觉皮肤完美而忽视对自己肌肤的保养,现在我能自动少吃或者不吃会伤害皮肤的食物。好的皮肤会向大家展示你光鲜的一面,在增强自信的同时让你一天都过得舒爽。感谢王老师细心的讲解,同时那些视频也教会了我如何让自己变得好看,如何去自制化妆品,如何去打扮自己。在此,我再次感谢您让我学到了这么多美化肌肤的方法!
四、参考文献
张素霞
《芦荟凝胶原汁制备工艺的研究》
Ara Der Marderosian,金怀荣 《生物学研究与化妆品配方概论》 章苏宁 《化妆品工艺学》
裘炳毅 《化妆品化学与工艺技术大全》 吴可克 《功能性化妆品》 金其璋 《香料香精化妆品》
第四篇:管片蒸汽养护工艺研究及其改进方法[推荐]
地铁管片蒸汽养护工艺及其改进
摘 要: 根据目前地铁管片蒸养工艺, 分析了蒸养对地铁管片混凝土强度的影响。并就目前地铁管片蒸养普遍存在能耗大、时间长的现象, 提出了改进的途径。要害词: 地铁管片;蒸养;结构破坏;强度影响因素;能耗;水泥水化热 0 前言
管片是一种混凝土预制衬砌(通常由多片按一定方式拼成环状), 主要用于建造地铁或大型排污水管道等, 在隧道开挖过程中, 管片主要起到支撑和防水作用。
蒸养是利用外部热源加热混凝土, 加速水泥水化反应和内部结构形成的一种加速混凝土硬化的方法,目的是缩短模板周转期, 提高产量。地铁管片一般采用的养护方法为常压蒸养, 养护制度基本上分为预养(Y)、升温(S)、恒温(H)、降温(J)四个阶段, 其过程如图 1 所示。
目前地铁管片在蒸养工艺方面存在的主要问题有: 养护期间罩内的空气在加热时热交换强度不够, 对于一些大型管片, 轻易造成同一管片的不同部位加热不均匀现象;蒸汽能量利用率较低, 能耗较高;现在地铁管片蒸养常采用直线升温方式(即按一定的升温速度升到最高温度), 这种方式的缺点是养护时间长。
本文通过养护的四个阶段, 分析蒸养对管片混凝土强度的影响因素, 提出对养护制度改进的一些建议。地铁管片养护工艺及各阶段对地铁管片的影响 1.1 预养期
一般指地铁管片浇灌成型后到加热升温前这一段静停放置时间。预养阶段的作用在于提高水泥在热养护开始以前的水化程度, 使混凝土具有必要的初始结构强度, 以增强混凝土对升温期结构破坏的抵御力。混凝土制品预养时间越长, 混凝土的初始结构强度就越大, 混凝土蒸养后, 制品内部损伤就越小。但是预养期不能过长, 否则会影响生产周期, 这里就存在一个最佳预养期问题, 闻名混凝土专家吴中伟教授指出, 最佳预养期为混凝土强度达到 0.39~0.49MPa 时所需的时间[1]。1.2 升温期
养护设备中介质的温度由初始温度升到恒温温度的时间称之为升温期。混凝土的结构破坏主要发生在升温阶段, 该阶段主要表现为粗孔体积增大, 气、液相数量增多。升温速度越快, 对混凝土的破坏作用就越大。地铁管片养护升温速度不宜超过 25 ℃/h, 最高温度不超过 55 ℃。1.3 恒温期
恒温期是混凝土强度主要增长期。混凝土在恒温时硬化速度取决于水泥品种、水灰比和恒温温度等。影响恒温时间的因素有水泥品种、水泥强度等级、预养时间、升温速度及恒温温度等[1]。水灰比越小, 混凝土硬化得越快, 所需恒温时间越短。恒温时间过长不一定好,可能出现强度波动现象。1.4 降温期
介质温度由恒温温度降到答应制品起吊温度这一段时间称为降温期。降温期地铁管片内部水分蒸发,同时产生收缩和拉应力。若降温速度过快, 地铁管片会产生过大的收缩应力, 这将导致地铁管片表面出现龟裂及酥松等结构损伤现象, 甚至造成质量事故。降温期的结构损伤与降温速度、混凝土强度、制品的表面模数(表面积与体积比值)以及配筋情况有关[1]。强度低、表面模数小、配筋少的制品宜慢速降温。最大降温速度可参考表 1。影响蒸养地铁管片强度的因素 2.1 水泥矿物成分
水泥中 C3S 在水化初期水化速度较快, 含量在45%~60%之间有利于管片初期结构的形成, 并能缩短管片的预养时间。水泥中 C2S 在蒸养过程中强度增长迅速, 形成的结构孔隙也较低, 但其强度的绝对值不高, 所以含量不宜过高, 假如对管片耐久性要求较高,可选择高 C2S 含量的水泥。C3A 在水泥中含量一般为4%~5%, 过高会影响管片的后期强度。C4AF 含量宜控制在 10%~15%, 含量达 20%时将使强度显著降低。2.2 外加剂
蒸养混凝土与自然养护的混凝土对外加剂的要求有所不同。不宜在混凝土中加入引气剂, 否则会引起管片外表面的肿胀和酥松。选择蒸养混凝土外加剂的一般原则是: 具备促进水泥水化, 含气量低、减水率大的早强型外加剂。2.3 矿物掺料
矿渣和粉煤灰具有较好的蒸养适应性, 可以降低混凝土的水化热和绝对温度, 减少混凝土由于蒸养带来的裂纹数量[3]。地铁管片的混凝土强度一般为 C50,矿物掺料一般控制在 20%左右, 粉煤灰一般宜用低钙Ⅱ级灰。2.4 用水量
一定的用水量是确保水泥正常水化及混凝土混合料和易性的重要条件, 但水又将在湿热养护时给混凝土结构带来破坏。由于水分的热膨胀和热介质的迁移, 会使混凝土孔隙率增大。因此, 用水量对混凝土结构的形成、强度及其它性能有重大的影响。低水灰比不仅有助于强度的迅速增长, 还可使密实度提高, 形成优质混凝土。3 养护方法的改进
养护工艺的改进有多种方法, 可以采用合理预养,变速升温, 改善养护条件等措施。3.1 变速升温及分阶段升温养护法
直线升温是常压湿热养护常用的一种升温制度,这种制度的缺点就是蒸养时间过长, 是一种消极抑制升温速度的方法。笔者认为, 变速升温制度较为合理,可在较低的温度下, 使混凝土强度逐渐增长, 在它达到能承受湿热破坏作用后, 再快速升温到最高温度。这种方式在气温较低时, 效果会更明显。例如, 在手控供汽时, 可以 1~2h 升温 20~35℃, 保温 1~2h, 再快速升温至最高温度, 这种方法可使混凝土结构破坏大大减弱, 可减少预养时间, 从而减少蒸养时间。如图 2 所示。实线为变速升温线, 虚线为直线升温线。从图上可以看出变速升温(实线所示)预养时间为 2h, 然后 2h 升温到35℃, 恒温 1h, 再快速升温到 50℃, 再恒温 2h, 最后降温到 10℃。从图中看到, 变速升温比直线升温预养时间少了 1h, 总时间也减少了 1h。
3.2 热介质定向循环养护法
热介质定向循环湿热养护是供热方法的改进, 由于加速了升温期热交换而使升温速度加快, 运用时一定要控制好升温速度[2]。
这种办法实质就是使蒸养罩内的混合气体产生定向强制循环流动, 来改变罩内蒸汽的静止状态和热交换强度, 达到养护均匀、缩短周期、节约能源的目的。
该工艺一个特点是利用蒸汽通过拉阀尔喷嘴增速以获得强制流动的推动力, 即喷嘴既是蒸汽喷出的通道, 又是实现混合气体定向循环流动的要害设施。如图 3 所示。上集气管宜位于养护罩上部的 2/3 处, 其上的喷嘴向下;下集气管可在罩底以上 1/3 处, 喷嘴向上。拉阀尔管为一个渐缩渐扩型管, 可以根据锅炉每小时蒸发的水蒸气量和车间内蒸养罩数量等因素来确定数量。一般可以上下各设置一个拉阀尔喷嘴。拉阀尔喷嘴示意图如图 4 所示。
3.3 地铁管片自然养护法
在温度较高的季节, 我们可以利用水泥的水化放热反应, 不需要蒸养, 进行自然养护。为了充分利用水泥水化热, 地铁管片在收水结束后必须将蒸养罩罩在地铁管片上, 密封越好, 热量损失越小, 养护时间就越短。例如, 我们假定以下养护参数: 气温为 5℃, 升温时间为 3h, 恒温时间为 2h, 降温时间为 2h, 升温速度为每小时 15℃, 最高恒温温度为 50℃, 降到最低温度为25℃, 可按下式近似计算此时地铁管片温度和时间的乘积 ε(度时积): ε= 0.5(t1 t2)×τ1 t2×τ2 0.5(t2 t3)×τ3 = 0.5(5 50)×3 50×2 0.5(50 25)×2 = 257.5℃h 式中, t1、t2、t3 分别为升温开始、恒暖和降温结束时的温度;τ
1、τ
2、τ3 分别为升温、恒暖和降温时间。
同样, 假如要达到度时积为 257.5℃h, 我们假设天气平均气温为 25℃, 令 t1= t2= t3=30℃(水泥水化热可以使地铁管片平均温度高出平均气温, 假如高出5℃), 代入上式, 则可以求出 τ1 τ2 τ3≈8.6h, 这个例子说明, 在达到相同的混凝土强度条件下, 在冬季 5℃时开始用蒸汽养护需要 7h, 在 25℃平均气温下, 利用水泥自身水化热作用, 8.6h 左右可以达到同样的混凝土强度。4 结论
(1)要充分熟悉到地铁管片养护制度的每个阶段对蒸养管片的影响。最佳预养期往往轻易被大家忽视, 要对此阶段引起足够的重视。管片蒸养最主要影响阶段是升暖和降温阶段, 这是减少管片表面龟裂纹和保证管片内在质量的重要阶段。
(2)除了合理确定养护制度外, 还要注重混凝土中原材料成分、外加剂、外掺料及水灰比对蒸养混凝土强度及管片质量的影响, 原材料中每种成分要在合理的比例之内, 否则不利于混凝土强度的发展, 混凝土中掺加一定量矿渣粉或粉煤灰对蒸养管片的质量有好处,低水灰比的混凝土比较适宜管片的蒸养。
(3)在管片养护方式方面, 改进方法有多种, 可以根据自己的实际需要采取分阶段升温方式, 改进蒸养设备或根据气暖和生产任务的情况, 在气温较高的季节采取自然养护法等措施来达到减少蒸养时间, 降低能耗的目的。参考文献: [1] 庞强特主编.混凝土制品工艺.武汉工业大学出版社, 1988.[2] 林方辉, 曹建华译.热介质定向循环养护室.中国建筑工业出版社, 1982.[3] 覃维祖, 等译.在 21 世纪建造耐久的混凝土结构.清华大学土木工程建筑材料研究所, 2002.
第五篇:制药工艺论文
溶菌酶结晶的制备及活力测定研究 制药工程2011级制药11班 ×××
指导老师 ××
摘要
目的:探讨溶菌酶结晶的制备及活力测定的方法。方法:以蛋清为原料制备溶菌酶结晶,首先将鸡蛋中的蛋清与蛋黄分离,取蛋清,然后用处理好的“724”树脂吸附,接着用蒸馏水洗涤,再经树脂洗脱,将所需物质与鸡蛋清中的其他蛋白质分离,然后再经盐析、纯化处理所得到的溶菌酶即可得结晶。将所得酶和底物分别放入25 OC恒温水浴预热10分钟,吸取底物悬浮液4mL放入比色杯中,在450nm波长读出吸光度,此为零时读数。然后吸取样品液0.2mL(相当于10µg酶),每隔30s读1次吸光度,共计下四个读数。结果:无结晶生成。结论:溶菌酶结晶的制备及活力测定研究实验以失败告终。关键词:溶菌酶 结晶 活力测定
The Preparation Of Lysozyme Crystallization And Activity Assay
Pharmaceutical Engineering2011 ZhenlinWei
Supervisor Weimin
Abstract Gold: to study the lysozyme crystallization method of preparation and activity assay.Methods: with egg white lysozyme crystallization as raw material preparation, first of all, separate the eggs in the egg white and yolk, egg white, a “724” and then use processing resin adsorption, then washing with distilled water, then through resin elution, the required material and other protein separation of egg qing dynasty, and then received by salting out, purification processing of lysozyme crystallization.Put the enzyme and substrate respectively in 25 OC preheat constant temperature water bath for 10 minutes, drain the substrate suspension 4 ml into colorimetric cup, read the absorbance at 450 nm wavelength, this is zero readings.Then absorbs the liquid sample 0.2 mL(equivalent to 10(including g enzyme), every 30 s read 1 absorbance, a total of four readings.Results: no crystallization generated.Conclusion: the preparation of lysozyme crystallization and dynamic measurement experiment ended in failure.Keywords: lysozyme crystallization activity assay
前 言
溶菌酶(Lysozyme, EC 3.2.1.17)是一种专门作用于微生物细胞壁的水解酶 ,又称细胞壁溶解酶(Muramidase),是由英国细菌学家弗莱明(Fleming)在 192年在人的眼泪、唾液中发现的[1]。溶菌酶广泛存在于鸟类和家禽的蛋清中,哺乳动物的泪液、唾液、血浆、尿、乳汁、其它体液(如淋液)中及白细胞和组织(如肝、肾)细胞内,而且部分植物、微生物中也含有此酶[2]。其中人溶菌酶的活性是最高的,大约为鸡蛋清溶菌酶酶活力的 3 倍。但是蛋清中溶菌酶含量最丰富,约为 0.3%-0.4%左右,而且蛋清来源广泛,因此多数商品溶菌酶是从蛋清中提取的[3]。李鹤等在食品研究与开发中提到了溶菌酶已确定的三种作用:1)将溶菌酶固定化在食品包装材料上, 生产出有抗菌功效的食品包装材料, 以达到抗菌保鲜功能。2)将溶菌酶固定化在 HEPA(空气过滤器)上, 作为空调的空气净化系统, 使其具有高效除尘和杀菌两大功能。当空气通过滤网时, 先滤集捕捉尘粒和细菌,然后将捕捉到的细菌杀灭[4]。3)用溶菌酶非专一性地降解海洋生物高分子壳聚糖, 使其成为能被人体吸收的低分子量具有独特生理活性和功能性质的低聚壳聚糖[5]。近几年,溶菌酶被广泛运用于医药、食品行业。溶菌酶作为一种天然蛋白质, 能在胃肠内作用于营养物质被消化和吸收, 对人体无毒性, 也不会在体内残留, 是一种安全性很高的食品保鲜剂、营养保健品和药品[8]。溶菌酶可用于各种加工食品或饮料制作中, 集药理、保健和防腐三种功能于一体[10]。因此, 在倡导绿色食品的今天, 溶菌酶的应用前景是相当广阔的应用前景[6]。
1、材料与方法
1.1实验试剂
鸡蛋清,10%硫酸铵,固体硫酸铵,磷酸二氢钠,磷酸氢二钠,十二水磷酸二氢钠,十二水磷酸氢二钠,EDTA,底物干菌粉,“724”树脂,丙酮。1.2仪器
721型分光光度计,抽滤瓶及布氏漏斗,研钵,恒温水浴,离心机,透析袋,1cm x 35cm层析柱,吸量管:0.1ml、0.2ml、1ml、5ml,真空干燥器。
1.3实验方法及步骤 蛋清的制备
将4~5个新鲜的鸡蛋两端各敲一个小洞,使蛋清流出(鸡蛋清pH值不得小于8),轻轻搅拌5分钟,使鸡蛋清的稠度均匀,用两层纱布过滤除去脐带块,量体积约80~100ml,计量体积,用冰块预冷至0摄氏度备用[7]。树脂吸附 将处理好的“724”树脂用布氏漏斗抽干,取湿树脂20g(约为蛋清量的1/5~1/4),在不断搅拌下加入预冷的蛋清中,再继续搅拌3h使充分吸附,静置过夜(0~5摄氏度)[9]。洗涤
将树脂移入烧杯,取10%硫酸铵溶液30~40ml(树脂量2倍,不可多用!)分3次加入搅拌(15min)洗脱,抽干树脂,合并洗脱液(滤液),树脂保存供再生。
脱盐 沉淀用1ml蒸馏水溶解后转入透析袋,用蒸馏水透析24h(0~5摄氏度冰箱),中途换水3~5次,或流水(搅拌)透析24h。去除碱性杂蛋白
将上述透析液用1mol/LNaOH(最后用0.1mol/LNaOH)溶液调至pH8.0~8.5。如有沉淀,离心除去[14]。结晶
用药勺在搅拌下慢慢向酶液中加入5%(W/V)研细的固体NaCl,注意防止局部过浓。加完后用NaOH溶液慢慢调至pH9.5~10.0,室温下静置48h。结晶观察与收取
肉眼观察有结晶形成后,用滴管吸取结晶液1滴置于载玻片上,在低倍显微镜下观察并画出结晶图形。离心或过滤收集酶晶体,用少量丙酮洗涤晶体2次,以五氧化二磷真空干燥后称重。
酶活力的测定
底物的制备
将微球菌接种于液体培养基扩大培养(28℃,24h),再接种于固体培养基培养(28℃,48h),用无菌水将菌体洗涤, 4000rpm 离心10min, 弃上清,再洗菌体数次, 最后用少量无菌水制成悬液, 冷冻干燥即得干菌粉[11]。取干菌粉5g,加入少量0.1mol/L的pH6.2磷酸缓冲液置于匀浆器或研钵中研磨2min, 倾出并稀释至20~25mL,悬液的光密度OD450在0.5~0.7范围为宜。
酶液的制备
准确称取干溶菌酶粉5mg,用0.1mol/L的pH6.2磷酸缓冲液溶解成0.05mol/L酶液。
酶活力测定
将酶液与底物悬液分别置于25℃水浴中保温10~15min, 测底物悬液的OD450 值,作为对照。然后加入酶液0.2mL(约10μg酶蛋白)迅速摇匀。从加酶时开始记时, 每30s测1次OD450值,共测3次[17]。
酶活力的计算
以每毫克溶菌酶每分钟使吸光度降低0.001个单位为1个酶活力单位。溶菌酶活力=ΔOD450/(0.001×W)(U/mg)式中, ΔOD450 为450nm 处每分钟吸光度的变化;W为加入的酶量(mg)。1.4数据处理
(1)计算:活力单位定义是:在25摄氏度,pH6.2,波长为450nm时,每分钟引起吸光度下降0.001为一个活力单位。
每1mg酶活力单位数=吸光度×1000/样品(ug)
(2)计算溶菌酶的收率并由其效价计算总活力回收率。收率=干燥的酶重量/蛋清总重量×100% 总活力回收率=(酶重量×效价)/蛋清总重量
2、结果
在溶菌酶结晶制备时无结晶形成,无法进行酶活力测定实验。
3、结论及分析
3.1 可能与实验过程中溶液的pH值有关,酶活性在pH6.0~6.5最强,且在pH5~7范围内较稳定[15]。实验结果无结晶生成,其原因可能是在实验过程中溶液的pH过酸或过碱,导致酶失活了,故无结晶生成。
3.2 可能与实验过程中溶液的温度有关,酶活性在25~65摄氏度范围内随着作用温度的升高酶的活性增强,但温度太高则变性失活[16]。实验结果无结晶生成,其原因可能是在实验过程的溶液的温度过高,导致酶失活,故无结晶生成。
3.3 可能与实验所用的蛋清的量有关,因为是小实验,所以实验所用蛋清的量约80~100ml,本来蛋清中就含有多种蛋白质,溶菌酶的含量也不高,并且在实验的过程中还会造成一定程度的损失,导致达不到结晶时对溶菌酶的浓度要求,故无结晶生成。
参考文献
[1] 宗柱,楚慧民,溶菌酶的应用前景和提取工艺,[J],农牧产品开发,1996,(4),30-31.[2] 楼善贤,溶菌酶的研究进展,[J],浙江肿瘤通讯,1991,(4),48-52.[3] 刘文会,从鸡蛋清中提取溶菌酶的研究,[N],北京化工大学硕士研究生学位论文,2003,(4),1-60.[4] 刘贤明, 马云骏.含溶菌酶的 HEPA 与双重杀菌过滤技术[J].节能 环保,2001(2): 20-21.[5] 周桂, 黄在银, 谭学才, 等.溶菌酶对海洋生物高分子壳聚糖的降 解研究[J].海洋科学, 2002(3): 53-56.[6] 李鹤, 马力 *, 王维香溶菌酶的研究现状[J]食品研究与开发,2008,29(1):182-185.[7] 赵龙飞,徐亚军.鸡蛋清中溶菌酶的应用性研究[J].食品工业,2006,(3):19-20.[8] 李敏.溶菌酶及其应用[M].生物学教学,2006,31(4):2-3.[9] 荣晓花,凌沛学.溶菌酶的研究进展[J].中国生化药物杂志,1999,20(6):319-320.[10]宗柱,楚慧民,溶菌酶的应用前景和提取工艺,[J].农牧产品开发,1996,(4),30-31 [11]楼善贤,溶菌酶的研究进展,[J].浙江肿瘤通讯,1991,(4),48-52 [12] 韩学仁,韩治才,[J].禽产品加工,北京,轻工业出版社,1989,24 [13] 孙占田.蛋清中的溶菌酶,[J].国外畜牧科技.1999,26(6):47.[14] 林亲录,马美湖.鸡蛋卵清中溶菌酶的提取与纯化[J].食品科学.2002,23(2):43-46.[15] 贾向志,李元,马文煜,[J].生物技术通讯,2002,9:374.[16] 中华人民共和国卫生部药典委员会编.中华人民共和国卫生部药品标准,生化药品,第一册,北京:北京科学出版社,1989:103.[17] 马绪荣,苏德模主编.药品微生物学检验手册.北京:北京科学出版社,2000:68.