专题:等差数列通项公式教案
-
等差数列的定义与通项公式教案(模版)
等差数列的定义与通项公式 一.教学目标 (1)知识与技能: 正确理解等差数列的概念;初步掌握等差数列的通项公式,并会简单应用。(2)过程与方法 通过对等差数列概念和通项公式的探究,培养
-
等差数列的前n项和公式教案
2.3等差数列的前n项和公式(教案) 一.教学目标: 1. 知识与技能目标 了解等差数列前n项和公式,理解等差数列前n项和公式的几何意义,并且能够灵活运用其求和。 2. 过程与方法目标 学
-
等比数列的通项公式(教案)
等比数列的通项公式(教案) 一、教学目标 1、 掌握等比数列的通项公式,并能够用公式解决一些相关问题。 2、 掌握由等比数列的通项公式推导出的相关结论。 二、教学重点、难点
-
等差数列前n项和公式说课稿
大家好!今天我说课的题目是《等差数列的前n项和》,所选用的教材为中等职业教育规划教材。 一、教材分析: 1、教材的地位和作用 《等差数列的前n项和》是第一册第五章第二节的内
-
数列、数列的通项公式教案(精选5篇)
目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。重点:1数列的概念。按一定次序排列的一列数
-
数列通项公式的求法教案(推荐5篇)
课题:数列通项公式的求法 课题类型:高三第一轮复习课授课教师:孙海明 1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法求通项(3)累乘法求通项,并能灵活地运用
-
《数列通项公式》教学设计
《数列通项公式》教学设计 【授课内容】数列通项公式 【授课教师】陈鹏 【授课班级】高三6班 【授课时间】2009年10月20日晚自习【教学目标】 一、知识目标: 1. 解决形如an+
-
《数列通项公式》教学反思
《数列通项公式》教学反思 数列是高考中必考的内容之一,而研究数列,要通项先行。本节课只是复习归纳了几种常见的求数列通项公式的方法,可以看到,求数列(特别是以递推关系式给出
-
等差数列通项公示教学设计(5篇模版)
等差数列通项公示教学设计(精选7篇)作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。
-
等差数列前n项和公式教学案例分析
《等差数列前n项和公式》教学案例分析 教学案例: 一、教学设计思想 本堂课的设计是以个性化教学思想为指导进行设计的。 本堂课的教学设计对教材部分内容进行了有意识的选
-
说课—《等差数列前n项和的公式》
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 说课—《等差数列前n项和的公式》 自己收藏的 觉得很有用 故上传到百度 与大家一起分享! 说课-《等差数列前n
-
等差数列前n项和教案
等差数列前n项和教案 一、教材分析 1、教材内容:等差数列前n项求和过程以及等差数列前n项和公式。 2.教材所处的地位和作用:本节课的教学内容是等差数列前n项和,与前面学过 的
-
数列通项公式之数学归纳法
数列通项公式之数学归纳法 1.用数学归纳法证明:2. 已知数列{an}满足a1=a,an+1=1111n++++=(nN*) 2446682n(2n+2)4(n+1)1 2an(1)求a2,a3,a4; (2)推测通项an的表达式,并用数学归纳法加
-
关于递推数列通项公式的测试题
关于递推数列通项公式的测试题
2Sn2例2.数列{an}中a11,an(n≥2),求数列{an}的通项an。 2Sn1例3.⑴ 数列{an}满足a11且an1an3n,求数列{an}的通项公式an;⑵ 数列{an}满足a11且an1an(3n -
高中数学数列求通项公式习题
补课习题(四)的一个通项公式是 ,A、anB、anC、anD、an2.已知等差数列an的通项公式为an32n , 则它的公差为A 、2B 、3C、 2D、33.在等比数列{an}中, a116,a48,则a7A、4B、4C、2D、
-
求数列的通项公式练习题
求数列的通项公式练习题
一、累加法
例 已知数列{an}满足an1an2n1,,求数列{an}的通项公式。练习:已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。二、累乘法
例 已知数 -
数列通项公式的求法简单总结
艳阳教育高中数学辅导 数列通项公式的求法类型1 递推公式为an1anf(n)
解法:把原递推公式转化为an1anf(n),利用累加法(逐差相加法)求解。 例1. 已知数列an满足a1解:由条件知:an1a -
yuanhong 《等差数列的前n项和公式》教学设计
《等差数列的前n项和》教学设计 教材分析: 《等差数列的前n项和》是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义 、通项公式后,对等差数列知识的进一步学习