专题:高中数学值域试题
-
值域习题
定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个
-
函数值域问题
努力今天成就明天 知识就是财富 求分式函数值域的几种方法 求分式函数值域的常见方法 1 用配方法求分式函数的值域 如果分式函数变形后可以转化为y配方,用直接法求得函数的值
-
普通高中数学关于数列试题
等差数列、等比数列同步练习题 等差数列黎岗 一、选择题 1、等差数列-6,-1,4,9,„„中的第20项为( ) A、89 B、 -101 C、101 D、-89 2. 等差数列{an}中,a15=33, a45=153,则217是这个数
-
分式函数值域解法
分式函数值域解法汇编甘肃省定西工贸中专文峰分校 张占荣函数既是中学数学各骨干知识的交汇点,是数学思想,数学方法应用的载体,是初等数学与高等数学的衔接点,还是中学数学联系
-
2014全国高中数学联赛试题及解答(范文大全)
2014年全国高中数学联合竞赛一试试题(A)
一.填空题:本大题共8小题,每小题8分,共64分.
1. 若正数a,b满足2+log2a3log3blog6(ab),则11的值为_______________ 解:设2+log2a3log3blog6(a -
高中数学选修1-2试题及答案
高二数学(文)竞赛试题一、选择题:本大题共14小题,每小题5分,共70分.在每小题给出的四个选项中,只有一项是符合要求的.1.若复数z3i,则z在复平面内对应的点位于A.第一象限B.第二象限C.第
-
高中数学专题2.14 等或不等解存在,转化值域可实现(解析版)
【题型综述】导数研究方程的根或不等式的解集利用导数探讨方程解的存在性,通常可将方程转化为,通过确认函数或的值域,从而确定参数或变量的范围;类似的,对于不等式,也可仿效此法.[
-
高一数学函数值域解题技巧
一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方
-
用反函数法求值域
用反函数法求值域一、 反函数法
分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型
对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和 -
求函数值域的方法
求函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;
②逆求法(反求法):通过反解x,用y 来表示 ,再由 x的取值范围,通过解不等式,得出 y的取值范围;
④换元法:通过变量 -
高中数学专题2.14 等或不等解存在,转化值域可实现(原卷版)
专题14等或不等解存在,转化值域可实现【题型综述】导数研究方程的根或不等式的解集利用导数探讨方程解的存在性,通常可将方程转化为,通过确认函数或的值域,从而确定参数或变量的
-
全国高中数学联合竞赛1996年试题
一九九六年全国高中数学联合竞赛
一、选择题(本题满分36分,每小题6分)
1. 把圆x2+ (y –1 )2 =1与椭圆9x2+ (y + 1)2 = 9的公共点, 用线段连接起来的图形是_________.
(A) 线段 -
2018年浙江省高中数学联赛预赛试题
2018年浙江省高中数学竞赛一、填空题(每题8分,共80分)1。已知a为正实数,且f(x)=是奇函数,则f(x)的值域为。2。设数列{an}满足a1=1,an+1=5an+1(n=1,2,…),则=。3.已知α、β∈,cos(α+β)=,sin(
-
2014全国高中数学联赛试题3及解答(范文)
2014年全国高中数学联合竞赛一试试题(A)
一.填空题:本大题共8小题,每小题8分,共64分.
3.若函数f(x)x2ax1在[0,)上单调递增,则实数a的取值范围是___________ x2axa解:f(x)xax1=2xaxa2 -
04全国高中数学联赛试题及参考答案
2004年全国高中数学联赛试题【第一试】一、选择题(本题满分36分,每小题6分)1、设锐角q使关于x的方程有重根,则q的弧度数为A.B。C。D。答:2、已知M=,N=,若对于所有的,均有则的取值范
-
10届全国高中数学联赛试题及答案
2010年全国高中数学联赛一试一、填空题(每小题8分,共64分,)1.函数的值域是.2.已知函数的最小值为,则实数的取值范围是.3.双曲线的右半支与直线围成的区域内部(不含边界)整点(纵横坐
-
求函数的值域常见类型
求值域的几种常用方法
(1) 观察法、直接法、配方法、换元法:
对于(可化为)“二次函数型”的函数常用配方法,如求函数ysin2x2cosx4,可变为ysin2x2cosx4(cosx1)22解决
(2)基本函数法:一 -
求函数的值域的常见方法
求函数的值域的常见方法王远征深圳市蛇口学校求函数的值域是高中数学的重点学习内容,其方法灵活多样,针对不同的问题情景,要求解题者,选择合适的方法,切忌思维刻板。本文就已知解