专题:高数极限习题及详解
-
高数极限习题
第二章 导数与微分 典型例题分析 客观题 例 1 设f(x)在点x0可导,a,b为常数,则limf(x0ax)f(x0bx)xabx0 f(x0) Aabf(x0) B(ab)f(x0)C(ab)f(x0) D 答案 C 解 f(x0ax)f(x0
-
高数极限习题及答案(精选多篇)
练习题 1. 极限 lim1xx3x32xlimx5x6x8x15x1x222x3limx1x12x1limx x10limaxbxx1 已知, 求常数a, b. xsin(6) 2limx0x1xlimxx21sinx(7) 12x2 (8) limxx012x(9
-
高数极限求法总结
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。 为什么第一章如此重要? 各个章节
-
高数课件-函数极限和连续范文合集
一、函数极限和连续自测题 1,是非题 (1)无界变量不一定是无穷大量 (2)若limf(x)a,则f(x)在x0处必有定义 xx012x(3)极限lim2sinxlimx0 xx33x2,选择题 (1)当x0时,无穷小量1x1x是x的 A.
-
高数复习方案(函数和极限)
计算机科学与技术09级学生工作委员会—学习部函数与极限1. 集合:具有某种特性定性质的事物的总体成为集合组成集合的事物叫做元素设元素为a集合为M那么aM交集,子集,属于,不属于
-
极限连续-高数竞赛超好
高数竞赛例题 第一讲 函数、极限、连续 例1. 例2. 例3. 例4. 例5. 例6. 例7. 例8. 例9. lim1nn(1n2nn). lim135(2n1)246(2n)n limx0x35x,其中[]为取整函数 lim1cosx
-
高数_第1章_极限计算方法总结
极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限,课本42页的表格必须认真填写并掌握。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到
-
极限习题1
第一章 函数与极限寒假作业基本功与进阶训练一、本章内容小结本章主要是函数、极限和连续性概念及有关运算;函数是高等数学研究的主要对象,而极限是高等数学研究问题、解决问
-
高数:总结求极限的常用方法5篇
总结求极限的常用方法,详细列举,至少4种 极限定义法 泰勒展开法。 洛必达法则。 等价无穷小和等价无穷大。 极限的求法 1. 直接代入法 适用于分子、分母的极限不同时为零或不
-
高数极限60题及解题思路[5篇范文]
高数极限60题 1.求数列极限lim(sinn1sinn)。 n2.设Snk,其中bk(k1)!,求limSn。 nbk1k2n1nn3.求数列极限lim(12q3qnq4.求数列极限lim[n),其中q1。 n24n5(n1)]。 111)(1)...(1)。
-
高数竞赛练习题答案(函数、极限、连续)
函数、极限、连续1. f(x),g(x)C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)g(a),f(b)g(b),证明:(a,b),使f()g()(a,b),使f()g() 证明:设f(x),g(x)分别在xc,xd处取得
-
高数复习笔记之极限与函数
1,隐含的分段函数与建立函数关系
2,如何判断微积分的有界性
3,极限定义做了解,性质:唯一性、保号性、四则运算,若一个极限存在另一个不存在则相加减的极限必不存在、乘除的极限可 -
极限绪论习题3
1. 利用有限覆盖定理证明致密性定理。
证明:反证法:设{xn}:axnb,但是没有收敛子列。则x[a,b]都不是{xn}的任何子列的极限,从而对x[a,b],O(x,x),其中只含有{xn}的有限项。这样[a,b]O( -
函数极限习题(精选5篇)
习题1—21.确定下列函数的定义域:(1)y;2x9(4)y2.求函数1sinyx0(x0)(x0)(2)ylogaarcsinx;(3)y2; sinx1x1(5)yarccosloga(2x3);loga(4x2)x22的定义域和值域。3.下列各题中,函数f(x)和g(x)是否相同
-
高数8多元函数的极限与连续
二元函数的极限 二元极限存在常用夹逼准则证明 例1 lim(3x2y)14 x2y1211xsinysin,xy0,例2 函数f(x,y)在原点(0,0)的极限是0. yx xy0.0二元极限不存在常取路径 x2y例3 证明:函
-
高财习题
、标的资产是指在合同中规定的涉及交易范围的资产或是司法案件中涉及纠纷的需要明确的财产。如:企业在签定销售合同时,某项产品已完工入库,这可以说明“合同存在标的资产”;如果
-
高数论文
高数求极限方法小结 高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在从初等数学这种静态的数量关系的分析到高等数学这种对动态数量关系的研究这一发
-
高数感悟
学高数感悟 又是一年开学季,我的大一成了过去式,回想大一学习高数的历程,真是感触颇多。 大一刚开始学习高数时,就发现与高中截然不同了,大学老师一节课讲的内容很多,速度也很快,我