专题:高一数列不等式测试题
-
高一数列测试题
高一数列测试题一、选择题(5分×10=50分)
1、4、三个正数a、b、c成等比数列,则lga、 lgb、 lgc是()
A、等比数列B、既是等差又是等比数列C、等差数列D、既不是等差又不是等比数列 -
数列不等式题[全文5篇]
数列不等式综合题示例例1 设等比数列an的公比为q,前n项和Sn0(n1,2,) (Ⅰ)求q的取值范围; (Ⅱ)设bn3an2an1,记bn的前n项和为Tn,试比较Sn与Tn2
41n12例2设数列an的前n项的和Snan22•, -
数列不等式的证明
数列和式不等式的证明策略
罗红波洪湖二中高三(九)班周二第三节(11月13日)
数列和式不等式的证明经常在试卷压轴题中出现,在思维能力和方法上要求很高,难度很大,往往让人束手无策,其 -
高一数学教案 数列 -数学教案
数列 -数学教案 教学目标 1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (1)理解数列是按一定顺序排成的
-
放缩法证明数列不等式
放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用
-
放缩法证明数列不等式
放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n
-
数列----利用函数证明数列不等式
数列
1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn
(1)确定常数k,求an;
(2)求数列{3在等差数列an中 -
探索数列不等式的证明
探索数列中不等式的证明教学目标:双基:加深学生对放缩法、二项式定理法、数学归纳法等方法的理解,并能运用这些方法证明数列不等式。能力:在问题的解决过程中,培养学生自主探索,归
-
数列与不等式证明专题五篇
数列与不等式证明专题复习建议:1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条
-
数列不等式推理与证明
2012年数学一轮复习精品试题第六、七模块 数列、不等式、推理与证明一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数
-
构造函数证明数列不等式
构造函数证明数列不等式 ln2ln3ln4ln3n5n6n3n(nN*). 例1.求证:23436ln2ln3lnn2n2n1例2.求证:(1)2,(n2) 2(n1)23n例3.求证:例4.求证:(1练习:1求证:(112)(123)[1n(n1)]e2.证明:3
-
几何不等式测试题
几何不等式测试题1.在△ABC中,M为BC边的中点,∠B=2∠C,∠C的平分线交AM于D。证明:∠MDC≤45°。2.设NS是圆O的直径,弦AB⊥NS于M,P为弧R,PM的延长线交圆O于Q,求证:RS>MQ。3.在△ABC中,设∠A
-
数列测试题及答案[合集五篇]
数列一、选择题1、(2010全国卷2理数)如果等差数列an中,a3a4a512,那么a1a2...a7 (A)14(B)21(C)28(D)35 【答案】C【解析】a3a7)4a53a412,a44,a1a2aa1a77(27a428 2、(2010辽宁文数)设Sn为等
-
数列测试题及答案5则范文
数列测试题及答案:一、选择题:本大题共12小题,每小题5分,共60分.1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为A.6 B.7 C.8 D.9解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.答案:A2.若等差数列{an}的前n项
-
高一不等式练习题
不等式综合练习题
一、选择题
1.若a,b,c为任意实数,且a>b,则下列不等式恒成立的是 (A)ac>bc(B)|a+c|>|b+c|(C)a2>b2(D)a+c>b+c 2.设a>1>b>-1,则下列不等式中恒成立的是 A.
1a1b
B.1a1
bC.a>b2D -
高一数列知识点总结
数列是高一数学的重点,以下是小编整理的高一数列知识点总结,欢迎参考阅读!求数列通项公式常用以下几种方法:一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项
-
强化命题证明一类数列不等式
该文发表于《中学数学教学参考》2006年第12期强化命题证明一类数列不等式201203华东师大二附中任念兵数列不等式是近年来高考和竞赛中的热点题型,其中一类形如in0n1C(C为常数)a
-
放缩法(不等式、数列综合应用)
“放缩法”证明不等式的基本策略近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能