专题:构造函数解导数问题
-
构造函数解导数
合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。 例1:
-
高中数学构造函数解决导数问题专题复习
高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数(Ⅰ)当时,
-
各种构造解导数压轴题
活用构造策略进入解题佳境 ——例说各种构造法解决导数压轴题 古县二中林立飞 摘要:函数与导数是高考的重要考点,不等式的恒成立问题、函数的零点问题、函数的极值点问题,随着
-
构造函数,结合导数证明不等式
构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘
-
构造函数,利用导数证明不等式
构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(
-
构造函数巧解不等式
构造函数巧解不等式湖南 黄爱民函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,
-
构造函数,妙解不等式
构不等式与函数是高中数学最重要的两部分内容。把作为高中数学重要工具的不等式与作为高中数学主线的函数联合起来,这样资源的优化配置将使学习内容在函数思想的指导下得到重
-
2022届高三专题复习:构造辅助函数求解导数问题
构造辅助函数求解导数问题专题讲座1.“作差(商)法”构造函数当试题中给出简单的基本初等函数,例如f(x)=x3,g(x)=lnx,要证明在某个取值范围内不等式f(x)≥g(x)成立时,可以构
-
高二数学2-2导数中构造函数
1.已知f(x)为定义在(,)上的可导函数,且f(x)f(x) 对于任意xR恒成立,则A. fe2f(0),
B. fe2f(0),
C. fe2f(0),
D. fe2f(0),
1.A
【解析】解:因为f(x)为定义在(,)上的可 -
函数解答题-构造函数证明不等式
函数解答题-构造函数证明不等式 例1(2013年高考北京卷(理))设L为曲线C:ylnx在点(1,0)处的切线. x(I)求L的方程;(II)证明:除切点(1,0)之外,曲线C在直线L的下方.【答案】解: (I)设
-
函数与导数综合问题
龙源期刊网 http://.cn
函数与导数综合问题
作者:
来源:《数学金刊·高考版》2013年第06期
深化导数在函数、不等式、解析几何等问题中的综合应用,加强导数的应用意识.
本考点 -
构造函数
构造函数
1.设
f(x)
,g(x)分别为定义在R上的奇函数和偶函数,当x0时,
f(x)g(x)f(x)g(x)0,且g(3)0,则不等式f(x)g(x)0的解集为______.
2.设f(x)是定义在R上的奇函数,且f(2)0,当x0时,有 -
联想导数运算法则合理构造函数解题
龙源期刊网 http://.cn
联想导数运算法则 合理构造函数解题
作者:朱贤良
来源:《数理化学习·高一二版》2013年第08期
著名数学家波利亚在《怎样解题》一书中明确提出,联想是解 -
导数证明不等式构造函数法类别(教师版)
导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:
-
构造函数处理不等式问题
构造函数处理不等式问题函数与方程,不等式等联系比较紧密,如果从方程,不等式等问题中所提供的信息得知其本质与函数有关,该题就可考虑运用构造函数的方法求解。构造函数,直接把握
-
有关构造函数问题的几点体会
龙源期刊网 http://.cn
有关构造函数问题的几点体会
作者:吴宏达
来源:《考试周刊》2013年第50期
摘 要: 构造函数是在高中数学学习中经常用到的一种方法,合理巧妙地运用它能达 -
导数证明不等式构造函数法类别(学生版)
导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:
-
构造函数法
函数与方程数学思想方法是新课标要求的一种重要的数学思想方法,构造函数法便是其中的一种。
高等数学中两个重要极限
1.limsinx1 x0x
11x2.lim(1)e(变形lim(1x)xe) x0xx
由以上两