专题:高中数学必修4教案
-
高中数学必修4示范课教案
高中数学必修4示范课教案 课题:1.4.2正弦、余弦函数的性质(二) 教学目的: 知识目标:要求学生能理解三角函数的奇、偶性和单调性; 能力目标:掌握正、余弦函数的奇、偶性的判断,
-
高中数学必修4新课标内容
必修四
第一章三角函数
课程目标
本章学习的内容是三角函数的定义、图象、性质及应用。三角函数是基本初等函数,它是描述周期现象的重要模型,在数学和其他领域中都有重要的作 -
人教版新课标高中数学必修4 全册教案
高中数学必修4教案 按住Ctrl键单击鼠标 1.1.1 任意角 教打开教学视频动画全册播放 学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二)
-
高中数学必修3经典教案全集(大全)
新课标高中数学必修3教案 目 录 第一章 算法初步 ..................................................................................................................
-
高中数学必修4 三角函数知识点小结
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90º,90º)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);
3. tan(kπ+α)=(-1)k -
高中数学 必修1 集合教案
学习周报专业辅导学习
集合(第1课时)
一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特
征等集合的基础知识。
②重点:集合的基本概念及集合元素的特征
③难点:元 -
必修4公开课教案
劝 学 九台一中杨乃柱 2012.3.27 1年6班 教学目的 一、借鉴荀子有关学习的意义和学习态度的论述。 二、掌握、积累“劝、学、青、中、疾、致、假、绝、兴、功、强、用”12个
-
高中政治必修4教案
活与哲学全册教案 第一课 美好生活的向导 一、【教学目标】: 1、知识目标 ◇识记哲学的含义世界观和方法论的含义哲学与世界观的关系哲学与方法论的关系 ◇理解
-
高中数学:8.1《正弦定理》学案(湘教版必修4)
正弦定理学案
一、预习问题:
1、在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。那么斜三角形怎么办?确定一个直角三角形或 -
高中数学必修3第三章教案(精选5篇)
ÐÏࡱá > þÿ ª ¬ þÿÿÿ ¨ © ú ` ó ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
-
高中数学必修五解三角形教案
高中数学必修五解三角形教案高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习解三角形一、知识点: 1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为
-
高中数学必修5高中数学必修5《等差数列复习》教案
等差数列复习知识归纳 1. 等差数列这单元学习了哪些内容? 定等差数列通义项前n项和主要性质 2. 等差数列的定义、用途及使用时需注意的问题: n≥2,an -an-1=d (常数) 3. 等差
-
高中数学 等差数列教案 苏教版必修5
等差数列(2) 一、创设情景,揭示课题 1.复习等差数列的定义、通项公式 (1)等差数列定义 (2)等差数列的通项公式:ana1(n1)d (anam(nm)d或andnp(p是常数)) (3)公差d的求法:① dan-an1 ②d2.
-
高中数学 等差数列教案 苏教版必修5
等差数列(4) 一、创设情景,揭示课题,研探新知 1.等差数列的定义:(1)等差数列的通项公式;(2)等差数列的求和公式。 2.等差数列的性质: 已知数列{an}是等差数列,则 (1)对任意m,nN,anam(nm)d,dan
-
高中数学必修1教学大纲
高中数学必修1 教学大纲 1.集合 (约4课时)(1)集合的含义与表示①通过实例,了解集合的含义,体会元素与集合的“属于”关系。②能选择自然语言、图形语言、集合语言(列举法或描述法)描
-
高中数学必修一 2
高中数学必修一《函数的单调性》的教与学研究1、此节课的教学流程是从学生的实际生活和所学知识出发,引导学生通过自主探究、合作讨论等方式,探究函数的单调性的概念。在此基
-
高中数学必修1-5目录
必 修 1
第一章 集合与函数概念(13课时)
§1.1集合4课时 §1.2函数及其表示4课时 §1.3函数的基本性质3课时 实习作业1课时 小结1课时
第二章 基本初等函数(Ⅰ)(14课时) §2.1指数 -
高中数学1.4 三角函数的图象与性质 教案4人教版必修4
三角函数的图象与性质一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇函数(或偶函