专题:高中数学线面
-
专题线面垂直
专题九: 线面垂直的证明 题型一:共面垂直(实际上是平面内的两条直线的垂直) 例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE 1题型二:线面垂直证明 (利用
-
2013年江苏省高中数学优秀课评比教案——线面垂直说课稿(汇编)
《直线与平面的垂直》说课稿 各位专家评委,各位老师,大家早上好! 我是江苏省南菁高级中学教师张琳,我今天要说课的课题是苏教版必修2的《直线与平面的垂直》。 一、教材分析 1
-
线面平行教案
§2.2.1 直线与平面平行的判定【教学目标】(1)识记直线与平面平行的判定定理并会应用证明简单的几何问题; (2)进一步培养学生观察、发现的能力和空间想象能力; (3)让学生了解空间与
-
证明线面平行
证明线面平行一,面外一条线与面内一条线平行,或两面有交线强调面外与面内二,面外一直线上不同两点到面的距离相等,强调面外三,证明线面无交点四,反证法(线与面相交,再推翻)五,空间向
-
线面平行证明
线面平行证明“三板斧”第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面内找到与已知直线的平行线。例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC
-
线面垂直高考题
高考真题演练:(2012天津文数).(本小题满分13分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2.(I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD;(III)求直线PB与
-
线面垂直教案
2012第一轮复习数学教案线面垂直、面面垂直教学目标:掌握线面垂直、面面垂直的证明方法,并能熟练解决相应问题. (一) 主要知识及主要方法:【思考与分析】要证明线面垂直,我们可以
-
线面平行证明题
线面平行证明题1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是.A. 异面B. 相交C.平行D. 不能确定2.若直线a、b均平行于平面α,则a与b的关系
-
线面垂直教案
课题:直线与平面垂直 授课教师:伍良云 【教学目标】知识与技能 1、掌握直线与平面垂直的定义及判定定理. 2、使学生掌握判定直线与平面垂直的方法. 过程与方法 培养学生的
-
线面垂直练习题
例1如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.变式训练已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.例2如图9,在
-
线面平行练习题
线面平行练习题11. 三棱柱ABC—A1B1C1中,若D为BB1上一点, M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;2、如图,在底面为平行四边形的四棱锥 P—ABCD 中,点 E 是 PD 的中点.求证:PB
-
立体几何线面平行问题
线线问题及线面平行问题一、知识点 1 1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点; ..2.公理4 :推理模式:a//b,b//ca//c
-
线面垂直教学设计
教案课题:直线与平面垂直的判定(一)【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;过程与方法目标:通过对定义
-
线面关系证明方法整理
证明线面平行的方法:(1)线面平行的判定定理——(2)面面平行的性质定理——若两平面平行,则一平面内的任一直线与另一面平行( 3 )定义法——线面无公共点aαbαa//b∥α证明面面平
-
线面平行判定教案
2.2.1 直线与平面平行的判定教学目标1.知识与技能 通过直观感知.操作确认,理解直线与平面平行的判定定理并能进行简单应用进一步培养学生观察.发现问题的能力和空间想
-
关于线面平行问题的探讨
关于线面平行问题的探讨刘玉扬中市第二高级中学 中学二级教师摘要:本文重要通过几个例题,对高考中常见的线面平行问题做一些简单的探讨,主要讨论如何运用判定定理来证明线面平
-
线面平行的性质
最有力的回答是行动,最有效的方法是参与神木四中2015届高一数学组直线与平面平行的性质第周第课时编写人:史会婷审核人:薛向荣使用人:编写时间:2012-12-9高一班组姓名组评学习目
-
线面、面面平行习题
线面、面面平行习题课三、例题精讲题型1、线面平行判定定理,线面平行性质定理线线平行 线面平行例1、(线线平行 →线面平行→线线平行)解:已知直线a∥平面,直线a∥平面,平面平面=b