专题:基本情况证明
-
基本不等式的证明
课题:基本不等式及其应用一、教学目的(1)认知:使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和abab(a、b∈R+,当且仅当a=b时取“=”号),并能应用它们证明一些
-
基本不等式与不等式基本证明
课时九 基本不等式与不等式基本证明第一部分:基本不等式变形技巧的应用基本不等式在求解最值、值域等方面有着重要的应用,利用基本不等式时,关键在对已知条件的灵活变形,使问题
-
基本不等式的证明
重要不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应
-
基本不等式的证明 教案
课题:基本不等式的证明(1)斜桥中学肖剑一、教材分析不等式是高中的重点也是难点,而本节内容又是该章的重中之重,是《考试说明》中八个C级考点之一。基本不等式的证明方法(比较
-
3.4.1 基本不等式的证明[模版]
a+b§3.4 基本不等式ab≤a≥0,b≥0) 23.4.1 基本不等式的证明一、基础过关111.已知a>0,b>0+ab的最小值是________. ab2.若a,b∈R,且ab>0,则下列不等式中,恒成立的是________.112ba①a2+b2>
-
证明不等式的基本方法
证明不等式的基本方法一、比较法(1)作差比较法3322【例1】已知a,b都是正数,且ab,求证:ababab【1-1】 已知ab,求证:a3b3ab(ab)【1-2】已知ab,求证:a46a2b2b44ab(a2b2)(2)作商比较法a
-
不等式证明的基本依据
不等式证明的基本依据·例题 例5-2-1 求证: (1)若x≠1,则x4+6x2+1>4x(x2+1); (2)若a≠1,b≠1,则a2+b2+ab+3>3(a+b); (3)若a<b≤0,则a3-b3<ab2-a2b. 解 (1)采用比差法: (x4+6x2+1)-4x(x2+1
-
3.4.1 基本不等式的证明(五篇)
凤凰高中数学教学参考书配套教学软件_教学设计3.4.1 基本不等式的证明(1)江苏省靖江高级中学杨喜霞教学目标:一、知识与技能1.探索并了解基本不等式的证明过程,体会证明不等式的
-
证明基本不等式的方法(5篇范文)
2.2 证明不等式的基本方法——分析法与综合法●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点.2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与
-
基本养老保险参保缴费证明(范文)
基本养老保险参保缴费证明, 系商丘建业住宅建业有限公司单位参保职工,该职工自_________年
_______月至__________年_____月共缴纳__________年_______月,现在我中心 正常参保_ -
不等式3(基本不等式应用与证明)(合集五篇)
学习要求大成培训教案(不等式3基本不等式证明与应用) 基本不等式1.理解算术平均数与几何平均数的定义及它们的关系.2.探究并了解基本不等式的证明过程, 会用多种方法证明基本
-
3.4.1 基本不等式的证明教学设计
凤凰高中数学教学参考书配套教学软件_教学设计3.4.1 基本不等式的证明南京师范大学附属中学 季人杰教学目标:1.探索并了解基本不等式的证明;2.体会证明不等式的基本思想方法;3.能
-
证明不等式的基本方法—比较法五篇范文
§4.2.1证明不等式的基本方法—比较法【学习目标】能熟练运用比较法来证明不等式。【新知探究】1.比较法证明不等式的一般步骤:作差(商)—变形—判断—结论.2.作差法:a-b>0a>b,a-b<0a<b.
-
证明不等式的基本方法二1
证明不等式的基本方法二综合法与分析法1教学目的:教学重点:综合法、分析法教学难点:不等式性质的综合运用 一、复习引入:1.重要不等式:如果a,bR,那么a2b22ab(当且仅当ab时取""号)2
-
圆的基本性质证明与计算
圆的基本性质证明与计算命题点1 垂径定理例1、如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BEB.=C.∠D=∠AECD.△ADE∽△CBE命题点2 圆周角定理例2
-
证明不等式的基本方法一5则范文
证明不等式的基本方法一------ 比较法教学目的:以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用教学重点:比较法的应用教学难点:常见
-
3.4.1 基本不等式的证明教学点评
凤凰高中数学教学参考书配套教学软件_评课 《3.4.1 基本不等式的证明》评课 南京师范大学附属中学 仇炳生 本节课的主要目标是探索并证明基本不等式abab(a0,b0).在探2索基本
-
证明四点共圆有下述一些基本方法
证明四点共圆有下述一些基本方法
证明四点共圆有下述一些基本方法:
方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.