专题:几个特殊函数的定积分
-
§4.4几种特殊类型函数的积分
§4 4几种特殊类型函数的积分
一、有理函数的积分
有理函数的形式
有理函数是指由两个多项式的商所表示的函数 即具有如下形式的函数:
P(x)a0xna1xn1an1xan Q(x)b0xb1xbm1xb -
定积分概念说课稿
定积分的概念说课稿 一、教材分析 1、教材的地位和作用 本节课选自二十一世纪普通高等教育系列教材《高等数学》第三章第二节定积分的概念与性质,是上承导数、不定积分,下接
-
定积分的概念说课稿
定积分的概念说课稿 基础教学部 高黎明 一、教材分析 1、教材的地位和作用 本节课选自同济大学《高等数学》第五章第一节定积分的概念与性质,是上承导数、不定积分,下接定积
-
定积分概念教案(修改)
四川工商学院授 课 计 划( 教 案 ) 课程名称:高等数学 章节名称:第六章 第一节 定积分的概念 使用教材:赵树媛主编,《微积分》(第四版),北京:中国人民大学出版社,2016.8 教学目的:掌握定
-
多元向量值函数积分自测题
1、填空题1) 设L为取正向的圆周x2y29则曲线积分22xy2ydxx4xdy L18。x2) 设曲线积分fxesinydxfxcosydy与积分路径无关,其中fx一阶L连续可导,且f00,则fx3) 1x1xee。 22y2zdydzxz2dzd
-
定积分的几何应用教案
4.3.1 定积分在几何上的应用 教材: 《高等数学》第一册第四版,四川大学数学学院高等数学教研室,2009 第四章第三节 定积分的应用 教学目的: 1. 理解掌握定积分的微元法; 2. 会用
-
ch 6 定积分的应用
高等数学教案 §6 定积分的应用 第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体
-
探讨定积分不等式的证明方法
探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。 关键词:定积分不等式证法 不等式的证明在高等数学的学习中很常见,但关
-
2016考研数学:定积分的证明
2016考研数学:定积分的证明 定积分及其应用这部分内容在历年真题的考察中形式多样,是考试的重点内容。启航考研龙腾网校老师希望同学们要加以重视! 定积分的证明是指证明题目
-
大学复变函数课件-复变函数的积分
第三章复变函数的积分复积分是研究解析函数的重要工具,解析函数的许多重要性质要利用复积分来证明。本章要建立的柯西积分定理和柯西积分公式是复变函数论的非常重要的基本定
-
复变函数与积分变换复习题
复变函数与积分变换复习题1, 将下列复数化为三角形式与指数形式1)z2i;2)zsin3icos3;3)z1icot,2.4)z1cosisin,0.(cos5isin5)25)z 3(cos3isin3)2, 求下列函数的辐角1)z;2z)n)3)求下
-
多元函数积分的计算方法与技巧范文
.多元函数积分
二重积分的计算方法与应用。
(一)在作二次积分时,首先是把一个自变量看成是一个参数,而不是看成变量,这样第一步是作单变量函数的定积分,然后得到一个包含第二个变 -
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些
-
概率统计定积分近似计算实验报告[推荐阅读]
实验 五 、定积分的近似计算 实验序号:5日期:2013 年 5 月 15 日 班级 学号 姓名 实验名称 定积分的近似计算 问题的背景和目的:加深对大数定律的理解,学会用 o Monte Carlo 方
-
关于定积分、曲线积分与二重积分的简单总结
关于定积分、曲线积分与二重积分的简单总结***
(吉首大学数学与计算机科学学院,湖南 吉首 416000)
摘要:微积分的内容主要包括极限、微分学、积分学及其应用.在此主要讨论和简单 -
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式 我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些
-
同济版高等数学教案第五章 定积分
高等数学教案第五章 定积分 第五章定积分 教学目的: 1、 理解定积分的概念。 2、 掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。 3、 理解变上限定
-
利用定积分的定义求极限
利用定积分的定义求极限 方法:如果f(x)dx存在,则lim
ab
ban
n
n
k1
f(a
ban
k)
ba
f(x)dx
例15求极限
n
(1)lim
n
k1n
nn4k
nn4k22解:lim
n
k1lim
1n
n
n
k1
114()
n
k
10