专题:极限习题
-
极限习题1
第一章 函数与极限寒假作业基本功与进阶训练一、本章内容小结本章主要是函数、极限和连续性概念及有关运算;函数是高等数学研究的主要对象,而极限是高等数学研究问题、解决问
-
高数极限习题
第二章 导数与微分 典型例题分析 客观题 例 1 设f(x)在点x0可导,a,b为常数,则limf(x0ax)f(x0bx)xabx0 f(x0) Aabf(x0) B(ab)f(x0)C(ab)f(x0) D 答案 C 解 f(x0ax)f(x0
-
极限绪论习题3
1. 利用有限覆盖定理证明致密性定理。
证明:反证法:设{xn}:axnb,但是没有收敛子列。则x[a,b]都不是{xn}的任何子列的极限,从而对x[a,b],O(x,x),其中只含有{xn}的有限项。这样[a,b]O( -
函数极限习题(精选5篇)
习题1—21.确定下列函数的定义域:(1)y;2x9(4)y2.求函数1sinyx0(x0)(x0)(2)ylogaarcsinx;(3)y2; sinx1x1(5)yarccosloga(2x3);loga(4x2)x22的定义域和值域。3.下列各题中,函数f(x)和g(x)是否相同
-
函数极限与连续习题(含答案)
1、已知四个命题:(1)若
(2)若
(3)若
(4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续, -
高等数学极限习题500道(5篇可选)
当xx0时,设1=o(),1o()且lim求证:lim xx0存在,11xx0limxx0.1 若当x0时,(x)(1ax)231与(x)cosx1是等价无穷小,则a 1313A. B. C. D..2222 答( )阶的是2当x0时,下述无穷小中最高A x B1 c
-
高等数学极限习题500道汇总(5篇)
当xx0时,设1=o(),1o()且limxx0存在, 1求证:limlim.xx0xx01 21若当x0时,(x)(1ax)31与(x)cosx1是等价无穷小,则a1313A. B. C. D.. 2222 答( ) 当x0时,下述无穷小中最高阶的是A x2 B1 c
-
高数极限习题及答案(精选多篇)
练习题 1. 极限 lim1xx3x32xlimx5x6x8x15x1x222x3limx1x12x1limx x10limaxbxx1 已知, 求常数a, b. xsin(6) 2limx0x1xlimxx21sinx(7) 12x2 (8) limxx012x(9
-
函数极限习题与解析[5篇范例]
函数与极限习题与解析 (同济大学第六版高等数学) 一、填空题 1、设f(x)2xlglgx ,其定义域为。 2、设f(x)ln(x1) ,其定义域为。 3、设f(x)arcsin(x3) ,其定义域为。 4、设f(x)的定
-
多元函数的极限与连续习题
多元函数的极限与连续习题
1. 用极限定义证明:lim(3x2y)14。 x2y1
2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。
(1)f(x,y)xy; xy
f(x,y)(xy)s -
第6章大数定理和中心极限定理习题答案范文大全
1n6-1设YnXi,再对Yn利用契比雪夫不等式: ni1nDXiDYi12nn0PYnEYn2n2222nn故Xn服从大数定理.6-2设出现7的次数为X,则有X~B10000,0.1,由棣莫佛-拉普拉斯定理可得PX968P6-3EXiEX
-
北大版高等数学第一章 函数及极限答案习题1.6
习题1.6
1.证明:任一奇数次实系数多项式至少有一实根.
证设P(x)是一奇数次实系数多项式,不妨设首项系数是正数,则limP(x),
x
limP(x),存在A,B,AB,P(A)0,P(B)0,P在[A,B]连续, -
北大版高等数学第一章 函数及极限答案习题1.2(范文)
习题1.2 1.求下列函数的定义域:yln(x24);yln1x5xx211x;yln4;y2x25x3.解x240,|x|24,|x|2,D(,2)(2,).1x1x0.1x0或1x01x01x0.1x1,D(1,1).5xx241,x25x40.x
-
北大版高等数学第一章 函数及极限答案习题1.4
习题1.4 1.直接用-说法证明下列各极限等式:limxaxa(a0);limxa;limee;limcosxcosa.xaxaxa22xa证0,要使||xa|xa||x-a|xa,由于|x-a|xa|x-a|ax,a|,故lim只需,|x
-
北大版高等数学第一章 函数及极限答案习题1.3
习题1.31.设xnnn2(n1,2,),证明limxn1,即对于任意0,求出正整数N,使得n当nN时有 |xn-1|,并填下表:n1|2n2,只需n22,取证0,不妨设1,要使|xn-1||Nn222,则当nN时,就有|xn-1|.nn2.
-
极限岁月
极限岁月我是一个平凡的人,我的故事也是平凡的故事。很小的时候,我不知道什么叫优秀和平庸。但我,却打心里认为我跟别人不同。我不用努力学习,每次总是第一名。连我的嗅觉,我很远
-
极限证明
极限证明1.设f(x)在(,)上无穷次可微,且f(x)(xn)(n),求证当kn1时,x, limf(k)(x)0. x2.设f(x)0sinntdt,求证:当n为奇数时,f(x)是以2为周期的周期函数;当n为偶数时f(x)是一线性函数与一
-
高等数学-极限
《高等数学》极限运算技巧 (2009-06-02 22:29:52) 转载▼ 标签: 分类: 数学问题解答 杂谈 知识/探索 【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊