专题:立体几何中的证明问题

  • 立体几何证明问题

    时间:2019-05-15 14:10:37 作者:会员上传

    证明问题例1. 如图,E、F分别是长方体边形. -的棱A、C的中点,求证:四边形是平行四例2. 如图所示,ABCD为正方形,SA⊥平面ABCD,过点A且垂直于SC的平面分别交SB、SC、SD与E、F、G.求证

  • 立体几何证明中常用知识点范文合集

    时间:2019-05-12 17:21:35 作者:会员上传

    立体几何证明中常用知识点一、判定两线平行的方法1、平行四边形
    2、中位线定理
    3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行(

  • 立体几何中不等式问题的证明方法

    时间:2019-05-15 14:10:29 作者:会员上传

    例谈立体几何中不等式问题的证明方法立体几何中的不等式问题具有很强的综合性,解决这类问题既要有较强的空间想象能力,又要有严密的逻辑思维能力,因此有一定的难度.下面我们介绍

  • 立体几何证明

    时间:2019-05-12 17:22:38 作者:会员上传

    立体几何证明高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(

  • 立体几何证明

    时间:2019-05-12 17:22:40 作者:会员上传

    1、(14分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.A2.如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱交B1C于点F,BB

  • 空间立体几何中有关垂直问题的证明 学案

    时间:2019-05-13 11:04:01 作者:会员上传

    空间立体几何中有关垂直问题的证明 学案学习目标: 1学会运用所学知识解决垂直的证明问题;2培养学生空间想象能力、逻辑推理能力;3培养学生用向量的代数推理能力解决立几何中探

  • 立体几何中的有关证明与综合问题(共5篇)

    时间:2019-05-12 18:19:01 作者:会员上传

    立体几何中的有关证明与综合问题例1. 已知斜三棱柱ABC-A’B’C’的底面是直角三角形,∠C'C=90°,侧棱与底面所成的角为α(0°

  • 立体几何的平行与证明问题

    时间:2019-05-12 17:22:24 作者:会员上传

    立体几何1.知识网络一、 经典例题剖析考点一 点线面的位置关系1、设l是直线,a,β是两个不同的平面 A.若l∥a,l∥β,则a∥β B.若l∥a,l⊥β,则a⊥βC.若a⊥β,l⊥a,则l⊥β D.若a

  • 立体几何证明方法

    时间:2019-05-12 17:22:21 作者:会员上传

    立体几何证明方法 一、线线平行的证明方法:
    1、利用平行四边形。2、利用三角形或梯形的中位线
    3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线

  • 立体几何垂直证明范文

    时间:2019-05-12 17:22:31 作者:会员上传

    立体几何专题----垂直证明学习内容:线面垂直面面垂直立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等

  • 文科立体几何证明

    时间:2019-05-12 17:22:31 作者:会员上传

    立体几何证明题常见题型1、如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PDDC1,E是PC的中点,作EFPB交PB于点F.(I) 证明: PA∥平面EDB;(II) 证明:PB⊥平面EFD; (III) 求三棱锥

  • 立体几何证明已经修改

    时间:2019-05-12 17:22:32 作者:会员上传

    F 1、如图,在五面体ABCDEF中,FA平面D ABC,DA//DB//CAFABBCFEF,EAB为,ECAD的M中点, 1AD 2(1)求异面直线BF与DE所成的角的大小;(2)证明:平面AMD平面CDE2、如图, 在直三棱柱ABC-A1B1C

  • 立体几何证明大题

    时间:2019-05-12 17:22:33 作者:会员上传

    立体几何证明大题1.如图,四面体ABCD中,AD平面BCD, E、F分别为AD、AC的中点,BCCD. 求证:(1)EF//平面BCD(2)BC平面ACD.2、如图,棱长为1的正方体ABCD-A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求证:BD

  • 立体几何证明格式示范

    时间:2019-05-12 02:49:56 作者:会员上传

    教材P58练习2答案:(注意规范格式)证明:连接B1D1M,N分别是A1B1和A1D1中点MN是A1B1D1中位线MN//B1D1MN//EFE,F分别是B1C1和C1D1中点EF是B1C1D1中位线EF//B1D1MN面EFDBMN//面EFDBEF

  • 立体几何规范性证明

    时间:2019-05-15 14:10:36 作者:会员上传

    立体几何证明规范性训练(1)1、如图,M,N,K分别是正方体ABCDA1B1C1D1的棱AB,CD,C1D1的中点. (1)求证:AN//平面A1MK;(2)求证:MKA1B1 立体几何证明规范性训练(2)1、 如图,直三棱柱ABC-A1B1C1中

  • 立体几何中的最值问题

    时间:2019-05-13 18:06:54 作者:会员上传

    立体几何中的最值问题上犹中学数学教研组刘道生普通高等学校招生全国统一考试新课程标准数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察

  • 立体几何问题1

    时间:2019-05-13 18:06:55 作者:会员上传

    16.(辽宁理12)。已知球的直径SC=4,A,B是该球球面上的两点,AB=,
    ASCBSC30,则棱锥S—ABC的体积为
    (A)3【答案】C
    (B)23 (C) (D)1

  • 立体几何的证明策略

    时间:2019-05-12 17:21:33 作者:会员上传

    立体几何的证明策略:
    几何法证明
    证明平行:3,2,1
    1、 线线平行:公理四,10页
    线面平行的性质定理,课本20页面面平行的性质定理,36页 2、 线面平行:线面平行的判定定理,19页面面平行的性