专题:平面几何证明常用方法
-
平面几何常用证明方法5则范文
平面几何常见证明方法 1,分析法 分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思
-
平面几何证明习题专题
平面几何证明习题1. 如图5所示,圆O的直径AB6,C为圆周上一点,BC3, 过C作圆的切线l,过A作l的垂线AD,垂足为D, 则DAC,线段AE的长为l线段CD的长为,线段AD的长为图5PA2.PB1,AC是圆O的直径,PC
-
2011高考平面几何证明
2011高考平面几何证明试题选讲1(2011安徽)如图4,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABCD与梯形EFCD的面积比为2 (2011北京)如图,AD,AE,BC分别与圆O切
-
高中竞赛专题:平面几何证明
竞赛专题-平面几何证明[竞赛知识点拨]1. 线段或角相等的证明(1)利用全等△或相似多边形(2)利用等腰△3)利用平行四边形(4)利用等量代换(5)利用平行线的性质或利用比例关系(6)利用圆中的等
-
平面几何证明题的基本思路及方法
平面几何证明题的基本思路及方法 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面
-
2012高考:平面几何证明(共5篇)
2012高考:几何证明1、(2012全国课标,22)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(I)CDBC;(II)△BCD∽△GBD;GEFB2、(2012广东,15)如图所示,圆O的半径为1,A
-
平面几何证明题的一般思路及方法简述
平面几何证明题的一般思路及方法简述【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几
-
平面几何证明题的一般思路及方法简述
平面几何证明题的一般思路及方法简述 【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面
-
解析法证明平面几何经典问题--举例
五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试?例1、设MN是圆O外一直线,过O作OA⊥MN于A,自A引两条直线分别交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.
-
部分课外平面几何定理证明(含5篇)
部分课外平面几何定理证明 一.四点共圆 很有用的定理,下面的定理证明中部分会用到这个,这也是我把它放在第一个的原因。 这个定理根据区域的不同,在中考有的地方能直接用,有的不
-
平面几何证明选讲结业考试
《平面几何证明选讲》结业考试命题:朱明英 审核:杨秀宇一 填空题(10×4=40)1 如图1,圆O上的一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的直径为.2 如图2,PAB是⊙O的割线,AB=4,AP=5,⊙O的
-
2.5.1平面几何中的向量方法(教案)(精选合集)
2.5 平面向量应用举例 2.5.1 平面几何中的向量方法 教学目标 1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”. 2.明了平面几何图形中的
-
证明方法
2.2直接证明与间接证明BCA案主备人:史玉亮 审核人:吴秉政使用时间:2012年2-11学习目标:1.了解直接证明的两种基本方法,即综合法和分析法。了解间接证明的一种基本方法——反证法
-
李明波四点定理的平面几何证明
李明波四点定理的平面几何证明郝锡鹏提要2009年9月19日,李明波导出和角余弦恒等式 cos2cos2cos2()2coscoscos()1 并用此给出他四点定理的一个平面几何证明。 1和角余弦恒等式
-
高中平面几何定理
(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两
-
平面几何练习题 初一
1.在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数。
2.试说明:∠A+∠B+∠C+∠D+∠E+∠F=360°
问题补充:3.已知:三角形ABC中,BC=2AB,角B=2角C,AD是BC边上的中线。求证三角形ABD -
初中平面几何证明题
九年级数学练习题1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG求证:S△ABCS△AEG2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的
-
中考平面几何证明题
初中几何证明题1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG 求证:S△ABCS△AEG2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中