专题:切比雪夫不等式的例题
-
切比雪夫不等式教学
★★★1.设求的最小值★★★2.若a、b、c是三角形三边长,s是半周长。求证:Vn∈N,下式成立解答或提示.不妨令由切比雪夫不等式当且仅当.设a≥b≥c,则a+b≥a+c≥b+c,()
-
切比雪夫不等式及其应用(摘要)
天津理工大学2011届本科毕业论文切比雪夫不等式及其应用摘要切比雪夫不等式是概率论中重要的不等式之一。尤其在分布未知时,估计某些事件的概率的上下界时,常用到切比雪夫不等
-
切比雪夫不等式证明5篇
切比雪夫不等式证明一、试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。分析:将一枚均匀硬币连续抛1000次可
-
应用切比雪夫
应用切比雪夫不等式解题切比雪夫不等式是解决不等式问题的强力武器之一.本文对该不等式及其应用进行简单的介绍.一、切比雪夫不等式及其推论1aibi n1 ②若a1a2an,b1b2bn.则
-
切比雪夫不等式解析,度量误差及推论
切比雪夫不等式解析,度量误差及推论 摘要:切比雪夫不等式表征了素数定理的计算误差极限,在孪生素数个数及偶数表为两个奇素数之和的表法个数的渐近函数误差估计中,可类比得到对
-
经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式
Mathwang几个经典不等式的关系一 几个经典不等式(1)均值不等式设a1,a2,an0是实数aaa12n 111n+a1a2an其中ai0,i1,2,n.当且仅当a1a2an时,等号成立.n(2)柯西不等式设a1,a2,an,b1,b2,
-
考研数学切比雪夫不等式证明及题型分析
武汉文都 wh.wendu.com 考研数学切比雪夫不等式证明及题型分析 在考研数学概率论与数理统计中,切比雪夫不等式是一个重要的不等式,利用它可以证明其它一些十分有用的结论或重
-
切比雪夫不等式的证明(离散型随机变量)
设随机变量X有数学期望及方差,则对任何正数,下列不等式成立 2
2
PXE(X)2
证明:设X是离散型随机变量,则事件XE(X)表示随机变量X取得一切满足不等式xiE(X)的可能值xi。设pi表示事 -
12二维随机变量的数字特征切比雪夫不等式与大数定律
概率论与数理统计习题解答第二章随机变量及其分布12二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量(X,Y)的联合概率密度为fx,yAy1求:(1)系数A;(2)数学期望E
-
部分作业解答或提示参考 第一章习题一14 证 由切比雪夫不等式
部分作业解答或提示参考第一章习题一1.4证(2) 由切比雪夫不等式及E||0P(||1/n)1P(||1/n)1nE||1故P(0)P(||1/n)limP(||1/n)1。n1n(4)由切比雪夫不等式P(||n)E||/n及E||,得P(||)P(
-
重要不等式汇总(例题答案)5则范文
其他不等式综合问题例1:(第26届美国数学奥题之一)设a、b、c∈R+,求证:1111.(1)a3b3abcb3c3abcc3a3abcabc分析;最初,某刊物给出了一种通分去分母的较为复杂的证法,这里试从分析不等式的
-
不等式的证明方法经典例题
不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学
-
均值不等式的正确使用及例题
均值不等式的正确使用及例题利用不等式求最值,要注意不等式成立的条件、等号成立的条件以及定值的条件,初学不等式时容易用错,现通过比较来说明均值不等式的正确使用。(一)均值不
-
高中数学不等式证明的常用方法经典例题
关于不等式证明的常用方法比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个
-
不等式的证明典型例题分析
不等式的证明典型例题分析例1 已知,求证:.证明 ∵∴,当且仅当时等号成立.点评 在利用差值比较法证明不等式时,常采用配方的恒等变形,以利用实数的性质例2 已知均为正数,求证. .分析
-
高中数学不等式典型例题解析(五篇模版)
高中数学不等式典型例题解析 高中数学辅导网http://www.xiexiebang.com/ 概念、方法、题型、易误点及应试技巧总结 不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可
-
不等式的证明·典型例题2
不等式的证明·典型例题 【例1】 已知a,b,c∈R+,求证:a3+b3+c3≥3abc. 【分析】 用求差比较法证明. 证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc =(a+b+c)[(a+b)2-(a+b)c+c2]-3
-
放缩法证明数列不等式经典例题
放缩法证明数列不等式主要放缩技能: 1.11111112 nn1n(n1)nn(n1)n1n1144112()22n4n1(2n1)(2n1)2n12n1n242. 2) 4.2n2n2n1115. n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.n22(n1