专题:数学必修一函数零点
-
数学必修一 函数的零点教案
4.1.1方程的根与函数的零点 学习目标 1.理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件. 2.通过观察二次函数图象,并计算函数在区间
-
函数零点教学设计
一、【教案背景】 1、课题:函数的零点 2、教材版本:苏教版数学必修(一)第二章2.5.1函数的零点3、课时:1课时二、【教学分析】 教材内容分析: 本节课的主要内容有函数零点的概念、
-
函数零点(小编整理)
函数的零点 尊敬的各位评委、老师大家好!我说课的题目是《函数的零点》,依据我对新课标的学习和对教材的研究,我将从以下几个方面来阐述我对这节课的教学设计. 一、教材的地位
-
必修一函数奇偶性教案
辅导讲义5-------函数的奇偶性 一、课前回顾 1、 (1)增函数定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
-
高一数学必修一基本初等函数教案
状元坊专用 基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n次方等于a(n1,且nN),则这个数称a的n次方根。即若xna,则x称a的n次方根n1且nN), 1)当n为
-
数学必修一函数的表示方法教案(精选5篇)
2.2.1函数的表示法(一) 学习目标: (1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点; (2)在实际情境中,会根据不同的需要选择恰当的方法表示函数; (3)通过具
-
高一必修一:函数教学设计
函数教学设计 陈予武北流市第九中学 教材分析 函数是贯穿整个数学课程的一个基本脉络.本节课是在学生前面学习了集合的有关知识和初中已经学习了函数概念的基础上进行的,是对
-
人教版数学必修1函数教案
第二章 函数§2.1 函数 一 函数的有关概念 1.函数的概念: 设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和
-
高一数学必修1函数教案
第二章 函数§2.1 函数 教学目的:(1)学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正
-
函数的零点教学反思(5篇)
一、 教学设计反思课题从学生熟悉的小引例入手,难度不大,思路不唯一。问题1与问题2进一步澄清概念,为下边的立体做好基础准备。例1是基础题目,运算简单;例2是数形结合,借助图象研
-
高陵小班 函数的零点 08-04
函数解析式、分段函数、函数求值 1. 函数f(x)3x2 2. 已知函数在定义域内f(x2)f(x)恒成立,判断f(x8),f(x6)的关系?你能得出什么结论? 3. 函数f(32x)2x3x31,求f 11,求f(f)
-
必修一 函数的基本性质 教案
必修一1.3 函数的基本性质教案 1.3.1 单调性与最大(小)值 1、 引入 观察如下函数图象,说说它们的图象是单调上升,还是单调下降,有没有最大值或最小值。 P27 2、 研究函数单调性 函数
-
高中数学二次函数教案人教版必修一
二次函数
一、考纲要求
二、一、复习回顾 1、讲解上节课所留作业中典型试题的解题方法,重新记录,加深印
象 2回答上节课所讲相关知识点,找出遗漏部分二、课堂表现 1、课堂笔记 -
函数零点的教学设计(精选多篇)
函数零点教学设计 教学目标 1、理解函数零点的具体定义 2、深入理解判定函数零点的两个条件 3、能够利用零点判定定理解决简单函数零点问题 教学重难点 重点 1、理解函数零
-
复变函数零点与极点五篇范文
2。判断极点 就是看使分母为零的数, 比如 sinz/z这道题0就是他的极点 再比如,sinz/z的4次幂 0是分母的4阶极点,但是同时也是分子的1阶,所以 0是分式的3阶极点~~~ 当0是分母的
-
《方程的根与函数的零点》教案设计
《方程的根与函数的零点》教案设计 1、教学设计的理念 本节课以提升数学核心素养的为目标任务,树立学科育人的教学理念,以层层递进的“问题串”引导学生学习,运用从特殊到一般
-
《方程的根与函数的零点》说课稿
3.1.1方程的根与函数的零点教学设计说明 各位尊敬的老师,下午好。今天我说课的题目是《方程的根与函数的零点》。下面我将从教材的地位与作用、学情分析,教学目标与重难点分析
-
方程的根与函数零点的说课稿
“方程的根与函数的零点”说课稿各位老师,你们好! 我说课的课题是 “方程的根与函数的零点” 说课内容分为六个部分, 首先对教材进行简要分析一、教材分析方程的根与函数的零点