专题:线性代数教案矩阵
-
线性代数教案-第二章 线性变换与矩阵(5篇范例)
第二章 线性变换与矩阵 代数学最基本的研究对象是代数系统本身的结构和不同代数系统之间的联系.上一章,对线性空间这种最重要和最基本的代数系统作了比较深入的研究.本章讨
-
线性代数教案
第一章线性方程组的消元法与矩阵的初等变换 教学目标与要求 1. 了解线性方程组的基本概念 2. 掌握矩阵的三种初等变换 教学重点 运用矩阵的初等变换解一般的线性方程组 教学
-
可逆矩阵教案
§1.4 可逆矩阵 ★ 教学内容: 1. 2. 3. 4. ★ 教学课时:100分钟/2课时。 ★ 教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及
-
线性代数教案第一章
线性代数教案第一章 第一章 行列式(12学时) 教学时数:12学时 教学目的与要求:理解并掌握行列式的概念和性质,行列式按行(列)展开定理,行列式的计算,克莱姆法则解方程组。 教学重点:行
-
矩阵的概念教案
9.1 矩阵的概念 一、新课引入:分析二元一次方程组的求解过程,探讨研究矩阵的有关知识: 步骤 方程组 矩形数表二、新课讲授 1、矩阵的概念 (1)矩阵:我们把上述矩形数表叫做矩阵,矩
-
浅析基矩阵在线性代数教学中的应用[共5篇]
浅析基矩阵在线性代数教学中的应用 湖州师范学院理学院 刘 东 摘要:本文主要研究基矩阵在线性代数中矩阵乘法运算的几何意义、乘法运算律、线性空间等方面的应用。 关键词:基
-
线性代数电子教案LA2-2B
6. 伴随矩阵:A(aij)nn, detA中元素aij的代数余子式为Aij. a11a21 Aan1a12a22an2a1nA11Aa2n, A*12annA1nA21A22A2nAn1An2 Ann 重要性质:AA*A*A(detA)E 7. 共轭矩阵:复矩阵A(aij)m
-
Matlab 与线性代数教案
Matlab 与线性代数 一、 Matlab 入门: 1. 启动、退出、运行: 2. 窗口介绍: 3. 基本符号: =:赋值符号 [ ]:数组定义符号 , 区分列 函数参数分隔符 ; 区分行 取消运行显示 % 注释标
-
线性代数--中国科技大学--典型教案
典型教案 第一章 线性方程组的解法 线性方程组就是一次方程组。 先来分析中学数学怎样解二元一次方程组。看它的原理和方法是否可以推广到一般的多元一次方程组。例1、解方
-
线性代数教案-第四章 线性方程组
第四章:线性方程组 一、 本章的教学目标及基本要求 所谓线性方程组,其形式为 a11x1a12x2a1nxnb1,axaxaxb,2112222nn2 (4.0.1) am1x1am2x2amnxnbm.其中x1,,xn代表n个未知
-
线性代数电子教案LA3-1B
第三章矩阵的初等变换 §3.1 矩阵的秩 1. 子式:在Amn中, 选取k行与k列, 位于交叉处的k2个数按照原来的 相对位置构成k阶行列式, 称为A的一个k阶子式, 记作Dk. k对于给定的k
-
线性代数电子教案LA1-2B
§1.4 行列式的性质 a11a1na11an1, DΤ, 则DΤD.性质1 设Dan1anna1nann 证 令bijaji(i,j1,2,,n), 则 b11bn1 DΤ(1)b1p1b2pbp2bnpn1nb(p12pn)nn (1)apapp11(22apnnD1p2pn
-
线性代数电子教案LA1-1B
线性代数讲稿 讲稿编者:使用教材:《线性代数》教学参考:《线性代数典型题分析解集》张 凯 院西北工业大学出版社 西工大数学系编 西北工业大学出版社 徐 仲 等编 第一章n阶行
-
线性代数电子教案LA5-1B
第五章矩阵的相似变换 §5.1 矩阵的特征值与特征向量 定义: 对于n阶方阵A, 若有数和向量x0满足Axx, 称为A的特征值, 称x为A的属于特征值的特征向量. 特征方程:Axx(AE)x0 或者
-
矩阵心得体会
《矩阵论》学习心得体会 2011-2012第一学期,我在李胜坤老师的引领下,逐步学习了科学出版社出版、徐仲和张凯院等编著的《矩阵论简明教程》第二版。该书是大学本科期间所学习的
-
矩阵分析
第一章:
了解线性空间(不考证明),维数,基
9页:线性变换,定理1.3
13页:定理1.10,线性空间的内积,正交
要求:线性子空间(3条)非零,加法,数乘
35页,2491011
本章出两道题
第二章:
约旦标准型
相 -
线性代数教案-第三章 行列式及其应用
第三章行列式及其应用 本在线性代数应用于几何、分析等领域时,行列式理论起着重要的作用,线性代数范畴的矩阵理论的进一步深化,也要以行列式作工具.本章研究行列式理论以及
-
线性代数电子教案LA4-1B(精选五篇)
第四章向量组的线性相关性 §4.1 向量及其运算 1.向量:n个数a1,a2,,an构成的有序数组, 记作(a1,a2,,an), 称为n维行向量. ai–– 称为向量的第i个分量 aiR–– 称为实向量(