专题:一元二次方程的学案
-
一元二次方程 导学案
一元二次方程【学习目标】1.理解一元二次方程及其有关概念;2.掌握一元二次方程的一般形式,正确认识二次项系数,一次项系数及常数项;3.了解根的意义.【前置学习】一、基础回顾:1.多
-
《一元二次方程》复习学案
第17章 一元二次方程单元复习学习目标: 1、进一步理解一元二次方程的意义。 2、 熟练掌握一元二次方程的解法,会根据一元二次方程的特点灵活地选择解法。 3、理解并掌握一元
-
一元二次方程复习学案2
一元二次方程复习学案 一、知识回顾与课前练习: 1. 的方程叫做一元二次方程。 如:下列方程中,是一元二次方程的是 (填序号) (1)x -1 =(x+2);(2)(a-1)x +bx+c =0;(3)3(x+1)=2x-5 ; 2.一元二次方
-
配方法解一元二次方程学案
2、2 用配方法解一元二次方程学案班级姓名时间:——学习目标:(1)理解配方法,会用配方法解数字系数的一元二次方程。(2)、自学课本P82-83页,小组讨论不明白的地方。学习重难点(1)(2)学
-
一元二次方程导学案(5篇范例)
一元二次方程----导学案
姓名一、学习目标
1 了解一元二次方程的有关概念。
2 能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程。
3 会根据根的判别式判 -
一元二次方程学案6练习题5篇
一元二次方程应用(3)习题训练学案6 1、 张大叔从市场上买回一张矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1m的正方形后,剩下的部分刚好能围成一个容积为15m的无盖长方体
-
一元二次方程实际问题
例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1) -
一元二次方程应用2010
1、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50
-
2014最新人教版一元二次方程 简单
《一元二次方程》单元训练题
班级:姓名:
一、选择题(每小题3分,共24分)
1.方程x2=2x-3化为一般形式后二次项系数、一次项系数和常数项分别为
A. 1、2、-3B.1、2、-3C.1、-2、3D.1、2、3 -
一元二次方程专题复习
一元二次方程专题复习类型之一 一元二次方程及其解的概念1 (2020·白银)已知x=1是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值为( )A.-1或2B.-1C.2D.0【变式训练】1.(2020·黑龙江
-
实际问题一元二次方程
22.3《实际问题与一元二次方程》学案
课型:上课时间:课时:
学习目标:
能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
学习过程: -
一元二次方程专题练习
22.2降次——解一元二次方程专题一利用配方法求字母的取值或者求代数式的极值1.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为A.-9或11B.-7或8C.-8或9C.-8或9222.如
-
《一元二次方程》参考教案
21.1 一元二次方程教学内容 本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 知识技能 探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际
-
(学案)用配方法解一元二次方程★
初三年级数学预习学案3.2用配方法解一元二次方程(1)总第28课时【预习目标】1.会用直接开平方法解一元二次方程2、会利用平方根的意义解形如(x+m)2=n(n≥0)的一元二次方程。3、通
-
公式法解一元二次方程学案(用)
22.2.2公式法 主备人:肖国斌 班级: 姓名: 学习目标: 1、会用公式法解一元二次方程 2、学生体验用配方法推导一元二次方程求根公式的过程,明确运用公式求根的前提条件是b2-4ac≥0 3
-
一元二次方程与证明题
一元二次方程与证明题班级姓名一.填空题1.一元二次方程x=16的解是2.若关于x的一元二次方程x2(k3)xk0的一个根是2,则另一个根是______.3.某种品牌的手机经过四、五月份连续两次降
-
关于一元二次方程教案大全(含5篇)
关于一元二次方程教案大全一元二次方程是初中数学的主要内容,在初中代数中占重要地位。学生积极动手、动脑、动口为主线来完成。在教学中渗透类比化归等数学思想,让学生充分观
-
2014中考数学一元二次方程
2014中考数学 一元二次方程一、选择题
1.(2012·嘉兴)一元二次方程x(x-1)=0的解是
A. x=0B. x=1
C. x=0或x=1D. x=0或x=-1
2.(2011·兰州)用配方法解方程x2-2x-5=0时,原方程应变形为
A.(