专题:中考数学二次函数应用专题
-
2018中考数学专题二次函数
2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=
-
二次函数的应用-中考数学函数考点全突破
考点分析:二次函数的实际应用考察销售利润方案问题是最常见的,并且根据二次函数的性质,在一定的范围内,求出符合要求的最大值得出最大利润,那么我们就要对销售利润问题的知识掌握
-
人教版中考数学专题复习二次函数
2021年人教版中考数学专题复习二次函数(满分120分;时间:90分钟)一、选择题(本题共计8小题,每题3分,共计24分,)1.在下列函数表达式中,一定为二次函数的是A.y=x+3B.y=ax2+bx+cC.y=t2-2t+
-
中考数学复习二次函数试题整理 (1)
如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(新课程P11)(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析
-
中考数学复习二次函数练习题及答案
基础达标验收卷一、选择题:1.(2003•大连)抛物线y=(x-2)2+3的对称轴是.A.直线x=-3B.直线x=3C.直线x=-2D.直线x=22.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在
-
二次函数的应用教案
30.4二次函数应用(第一课时) 教学目标 知识与技能 通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会求解最值问题。 过程与方法 通过观察图象,理解
-
6.4二次函数应用教案
课 题: §6.3二次函数的应用(2) 教学目标: 1.能根据揭示实际问题中数量变化关系的图象特征,用相关的二次函数知识解决实际问题; 2.会用二次函数的相关知识解决现实生活中一些有关
-
6.4 二次函数的应用
§6.4 二次函数的应用(2) 教学目标: 了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值. 教学重点: 是应用二次函数
-
二次函数问题是近几年来中考
二次函数问题是近几年来中考、高考的压轴题,因为一方面二次函数的基本内容与近现代数学的发展有密切联系,是学习高等数学极为重要的知识点,另一方面围绕二次函数能全面考查对函
-
2017年中考数学二次函数压轴题(含答案)
2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若
-
中考数学复习二轮冲刺高频考点模块练习(二次函数的代数应用)
2021年中考数学复习二轮冲刺高频考点模块练习(二次函数的代数应用)一.选择题.1.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是A.向左平移2个单位B.向右平移
-
二次函数
?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上
-
二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围 -
初中数学复习二次函数
1、已知二次函数y=﹣x2+bx+c的图象过点A(3,0),C(﹣1,0).求二次函数的解析式;如图,点P是二次函数图象的对称轴上的一个动点,二次函数的图象与y轴交于点B,当PB+PC最小时,求点P的坐标;在
-
二次函数的应用说课材料
二次函数的应用——拱桥问题说课稿 梁海莲 一、教材分析 1.教材的地位和作用 二次函数的应用是初中数学的重点和难点之一。 2.从内容上看: 二次函数的应用是二次函数学习的深
-
二次函数的实际应用的反思
关于二次函数的实际应用的反思 张珺瑕 二次函数的实际应用,根据自己书写的教案,从教材分析、教学方法、学法及教学手段的选择、教学过程设计等方面做出具体的说明。 教学内容
-
二次函数的应用教学设计
二次函数的应用教学设计 一、教学分析 (一)教学内容分析 二次函数yax2bxc的图像和性质是人教版九年级数学下册的内容,是在学生学习了二次函数的基本概念及yax2bxc的图像和性质
-
一元二次函数性质的应用[精选合集]
教案二 课题:一元二次函数性质的应用. 教学目标:1.巩固一元二次函数的图象和性质. 2.加深对一元二次函数图象和性质的理解. 3.培养学生的逻辑思维能力、运算能力和作图能力,培