[高二数学]平面向量的概念及运算知识总结

时间:2019-05-12 01:57:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《[高二数学]平面向量的概念及运算知识总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《[高二数学]平面向量的概念及运算知识总结》。

第一篇:[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算

一.【课标要求】

(1)平面向量的实际背景及基本概念

通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;

(2)向量的线性运算

①通过实例,掌握向量加、减法的运算,并理解其几何意义;

②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义(3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件

二.【命题走向】

本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。

预测2010年高考:

(1)题型可能为1道选择题或1道填空题;

(2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。

三.【要点精讲】

1.向量的概念

①向量

既有大小又有方向的量。向量一般用a,b,c……来表示,或用有向线段的起点与终点的大写字母表示,如:AB几何表示法AB,a;坐标表示法axiyj(x,y)。向量的大小即向量的模(长度),记作|AB|即向量的大小,记作|a|。

向量不能比较大小,但向量的模可以比较大小

②零向量

长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a=0|a|=0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别)③单位向量

模为1个单位长度的向量,向量a0为单位向量|a0|=1。

④平行向量(共线向量)方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

反的向量,称为平行向量,记作a∥b。由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的

⑤相等向量

长度相等且方向相同的向量相等向量经过平移后总可以重合,记为ab。大小相等,方向相同

xx2。(x1,y1)(x2,y2)1y1y22.向量的运算(1)向量加法

求两个向量和的运算叫做向量的加法

设ABa,BCb,则a+b=ABBC=AC。规定:

(1)0aa0a;

(2)向量加法满足交换律与结合律;

向量加法的“三角形法则”与“平行四边形法则”

(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。

(2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点

当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。

向量加法的三角形法则可推广至多个向量相加:

ABBCCD。PQQRAR,但这时必须“首尾相连”(2)向量的减法

①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量

记作a,零向量的相反向量仍是零向量。关于相反向量有:

(i)(a)=a;(ii)a+(a)=(a)+a=0;(iii)若a、b是互为相反向量,则a=b,b=a,a+b=0。

②向量减法

向量a加上b的相反向量叫做a与b的差,记作:aba(b)求两个向量差的运算,叫做向量的减法

③作图法:ab可以表示为从b的终点指向a的终点的向量(a、b有共同起点)。(3)实数与向量的积

①实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下:

(Ⅰ)aa;

(Ⅱ)当0时,λa的方向与a的方向相同;当0时,λa的方向与a的方向相

反;当0时,a0,方向是任意的。

②数乘向量满足交换律、结合律与分配律 3.两个向量共线定理:

向量b与非零向量a共线有且只有一个实数,使得b=a。

4.平面向量的基本定理

如果e1,e2是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数1,2使:a1e12e2其中不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底

5.平面向量的坐标表示

(1)平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底由平面向量的基本定理知,该平面内的任一向量a可表示成由于a与数对(x,y)是一一对应的,因此把(x,y)叫做向量a的坐标,记作a=(x,y),axiyj,其中x叫作a在x轴上的坐标,y叫做在y轴上的坐标。

规定:

(1)相等的向量坐标相同,坐标相同的向量是相等的向量;

(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关系。

(2)平面向量的坐标运算:

①若ax1,y1,bx2,y2,则abx1x2,y1y2; ②若Ax1,y1,Bx2,y2,则ABx2x1,y2y1; ③若a=(x,y),则a=(x, y);

④若ax1,y1,bx2,y2,则a//bx1y2x2y10。6.向量的数量积

(1)两个非零向量的夹角

已知非零向量a与a,作OA=a,OB=b,则∠AOA=θ(0≤θ≤π)叫a与b的夹角; 说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=时,a与b垂直,记a⊥b; 2(4)注意在两向量的夹角定义,两向量必须是同起点的,范围0≤≤180。

(2)数量积的概念

已知两个非零向量a与b,它们的夹角为,则a·b=︱a︱·︱b︱cos叫做a与b的数量积(或内积)。规定0a0;

向量的投影:︱b︱cos=为射影;

(3)数量积的几何意义: a·b等于a的长度与b在a方向上的投影的乘积(4)向量数量积的性质

①向量的模与平方的关系:aaa2|a|2。②乘法公式成立

ab∈R,称为向量b在a方向上的投影。投影的绝对值称|a|abababaaba2abba222222b; 2abb;

222③平面向量数量积的运算律 交换律成立:abba;

R;

分配律成立:abcacbccab。对实数的结合律成立:ababab④向量的夹角:cos=cosa,babab=

x1x2y1y2x1y1x2y22222。

当且仅当两个非零向量a与b同方向时,θ=00,当且仅当a与b反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题

(5)两个向量的数量积的坐标运算 已知两个向量a(x1,y1),b(x2,y2),则a·b=x1x2y1y2。(6)垂直:如果a与b的夹角为900则称a与b垂直,记作a⊥b。

两个非零向量垂直的充要条件:a⊥ba·b=Ox1x2y1y20,平面向量数量积的性质。

(7)平面内两点间的距离公式

设a(x,y),则|a|2x2y2或|a|x2y2。

如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),那么|a|(x1x2)2(y1y2)2(平面内两点间的距离公式)

2.向量的应用

(1)向量在几何中的应用;(2)向量在物理中的应用。

五.【思维总结】

数学教材是学习数学基础知识、形成基本技能的“蓝本”,能力是在知识传授和学习过程中得到培养和发展的。新课程试卷中平面向量的有些问题与课本的例习题相同或相似,虽然只是个别小题,但它对学习具有指导意义,教学中重视教材的使用应有不可估量的作用。因此,学习阶段要在掌握教材的基础上把各个局部知识按照一定的观点和方法组织成整体,形成知识体系。

学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点

(1)向量的加法与减法是互逆运算;

(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件;(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况;

(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关系

第二篇:数学高考平面向量的概念及线性运算专题复习题附答案

长度等于0的向量叫做零向量,下面的是数学高考复习近平面向量的概念及线性运算专题测试,请考生及时练习。

一、填空题

1.若O是ABC所在平面内一点,D为BC边的中点,且2++=0,那么=________.[解析] 因为D为BC边的中点,+=2,又2++=0,2+2=0,即=.因此=2,故=.[答案]

2.(2014镇江质检)若a+c与b都是非零向量,则a+b+c=0是b(a+c)的________条件.[解析] 若a+b+c=0,则b=-(a+c),b∥(a+c);

若b(a+c),则b=(a+c),当-1时,a+b+c0.因此a+b+c=0是b(a+c)的充分不必要条件.[答案] 充分不必要

3.如果=e1+e2,=2e1-3e2,=3e1-ke2,且A,C,F三点共线,则k=________.[解析] =e1+e2,=2e1-3e2,=+=3e1-2e2.A,C,F三点共线,∥,从而存在实数,使得=.3e1-2e2=3e1-ke2,又e1,e2是不共线的非零向量,因此k=2.[答案]

24.(2014南京调研)在ABC中,点D是BC边上的点,=+(,R),则的最大值为________.[解析] D在边BC上,且=+,0,0,且+=1,2=,当且仅当==时,取=号.[答案]

5.(2014泰州市期末考试)在ABC中,=2,若=1+2,则12的值为________.[解析] =+=+,而=-,所以=+,所以1=,2=,则12=.[答案]

6.(2014南京市调研)如图43所示,在ABC中,D,E分别为边BC,AC的中点,F为边AB上的点,且=3,若=x+y,x,yR,则x+y的值为________.图

43[解析] D为BC的中点,=(+)=(3+2)=+,故x=,y=1,x+y=.[答案]

7.(2014宿迁质检)若点M是ABC所在平面内的一点,且满足5=+3,则ABM与ABC的面积比为________.[解析] 设AB的中点为D,如图所示,由5=+3得

3-3=2-2,即3=2.故C,M,D三点共线,且=.所以===.[答案]

8.(2014扬州质检)设点M是线段BC的中点,点A在直线BC外,||=4,|+|=|-|,则||=________.[解析] 延长AM至点D,连结BD、CD,则ABDC为平行四边形,+=,-=,|+|=|-|,||=||=4,||=||=2.[答案]

2二、解答题

9.设两个非零向量a与b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:A,B,D三点共线;

(2)试确定实数k,使ka+b和a+kb共线.[解](1)=a+b,=2a+8b,=3(a-b).=+=2a+8b+3(a-b)=5(a+b)=5.,共线,又它们有公共点B,A,B,D三点共线.(2)假设ka+b与a+kb共线,则存在实数,使ka+b=(a+kb),即(k-)a=(k-1)b.又a,b是两不共线的非零向量,k-=k-1=0.k2-1=0,k=1.10.在ABC中,=,DEBC交AC于E,BC边上的中线AM交DE于N,设=a,=b,用a、b表示向量、、、、、.图44

[解] ==b.=-=b-a.由ADE∽△ABC,得==(b-a).又AM是ABC的中线,DEBC,得==(b-a).又=(+)=(a+b).==(a+b).

第三篇:高一数学-54平面向量的坐标运算

5.4平面向量的坐标运算

知识要点精讲

知识点1平面向量的坐标表示

在直角坐标系内,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得

a=xi+yj ①

我们把(x,y)叫做向量a的直角坐标,记作:a=(x,y)②

其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示,与a相等的向量的坐标也为(x,y).

解题方法、技巧培养

出题方向1 求向量的坐标

(1)已知A(1,3),B(-3,2),求a的坐标;

(2)已知A(2,-1),a=(4,1),求B点坐标;

(3)已知B(-1,2),a=(5,-2),求A点坐标.

点拨 只有起点在坐标原点的向量才能用终点坐标表示,其它向量的坐标都要用其终点坐标减去其起点坐标表示.

出题方向2 向量的坐标运算

例2 已知a=(1,2),b=(3,4),求-2a+3b,4a-2b的坐标.

[答案] ∵ -2a=(-2,-4),3b=(9,12),∴ -2a+3b=(-2,-4)+(9,12)=(7,8).

∵ 4a=(4,8),2b=(6,8),∴ 4a-2b=(4,8)-(6,8)=(-2,0).出题方向3 由向量相等则它们的坐标相等来求某些点的坐标

[答案] 设顶点D的坐标为(x,y),点拨平面向量相等的代数表示沟通了数与形的联系.

例4 已知向量a=(3,-2),b=(-2,1),c=(7,-4),若c=ma+nb,求m,n.[解析] 先求ma+nb,再根据向量相等即向量坐标对应相等,列出方程组求m,n.[答案] ma+nb=m(3,-2)+n(-2,1)=(3m-2n,n-2m).

∵ c=ma+nb,∴(7,-4)=(3m-2n,n-2m).

出题方向4 利用向量共线的坐标表示的充要条件解决有关直线平行、三点共线问题例5 已知a=(2,k),b=(2k,3k+1),若a∥b,求k的值.

[解法二] ∵ a∥b,∴ 2(3k+1)-k(2k)=0,即k2-3k-1=0.

点拨 两种表达式不同,但实质是一样的.

点拨 在证明必要性时,不需要像证明充分性一样,将A、B、C三点所在直线与坐标轴垂直的情况单独证明,因为那是显然成立的.

易错易混点警示

(1)混淆向量坐标与点的坐标是向量坐标运算中常见的错误之一;

(3)向量平行的充要条件与后面向量垂直的充要条件混淆.

学法导引

1.理解向量的坐标表示的含义:向量的坐标表示是向量的一种表示形式

向量坐标表示的背景是平面向量基本定理;每一个向量都可用唯一一个有序数对来表示:向量的坐标与向量的起点、终点无关,只与起点终点的相对位置有关.

2.向量的坐标运算与前面所学的坐标运算是一样的,只要计算时细心.

第四篇:平面向量的坐标运算 教案

平面向量的坐标运算 教案

一、教学目标

1、知识与技能:

掌握平面向量的坐标运算;

2、过程与方法:

通过对共线向量坐标关系的探究,提高分析问题、解决问题的能力。3情感态度与价值观:

学会用坐标进行向量的相关运算,理解数学内容之间的内在联系。

二、教学重点与难点

教学重点:平面向量的坐标运算。

教学难点:向量的坐标表示的理解及运算的准确.三、教学设想

(一)导入新课

思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B不同时为零)何时所体现的两条直线平行?向量的共线用代数运算如何体现?

思路2.对于平面内的任意向量a,过定点O作向量OA=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?

(二)推进新课、新知探究、提出问题

①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标表示吗? ②如图1,已知A(x1,y1),B(x2,y2),怎样表示AB的坐标?你能在图中标出坐标为(x2-x1,y2-y1)的P点吗?标出点P后,你能总结出什么结论? 活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:

图1 a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j, 即a+b=(x1+x2,y1+y2).同理a-b=(x1-x2,y1-y2).又λa=λ(x1i+y1j)=λx1i+λy1j.∴λa=(λx1,λy1).教师和学生一起总结,把上述结论用文字叙述分别为: 两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量AB平移,使得点A与坐标原点O重合,则平移后的B点位置就是P点.向量AB的坐标与以原点为始点,点P为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.学生通过平移也可以发现:向量AB的模与向量OP的模是相等的.由此,我们可以得出平面内两点间的距离公式: |AB|=|OP|=(x1x2)2(y1y2)2.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能.②AB=OB-OA=(x2,y2)-(x1,y1)=(x2-x1,y2-y1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.提出问题

①如何用坐标表示两个共线向量? ②若a=(x1,y1),b=(x2,y2),那么

y1y2是向量a、b共线的什么条件? x1x2活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a=(x1,y1),b=(x2,y2),其中b≠0.我们知道,a、b共线,当且仅当存在实数λ,使a=λb.如果用坐标表示,可写为(x1,y1)=λ(x2,y2), xx2,即1消去λ后得x1y2-x2y1=0.y1y2.这就是说,当且仅当x1y2-x2y1=0时向量a、b(b≠0)共线.又我们知道x1y2-x2y1=0与x1y2=x2y1是等价的,但这与

y1y2是不等价的.因x1x2为当x1=x2=0时,x1y2-x2y1=0成立,但

y1yyy2均无意义.因此12是向量a、bx1x2x1x2共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x1y2-x2y1=0时,向量a、b(b≠0)共线.②充分不必要条件.提出问题

a与非零向量b为共线向量的充要条件是有且只有一个实数λ使得a=λb, 那么这个充要条件如何用坐标来表示呢?

活动:教师引导推证:设a=(x1,y1),b=(x2,y2),其中b≠a,x1x2,由a=λb,(x1,y1)=λ(x2,y2)消去λ,得x1y2-x2y1=0.y1y2.讨论结果:a∥b(b≠0)的充要条件是x1y2-x2y1=0.教师应向学生特别提醒感悟: 1°消去λ时不能两式相除,∵y1、y2有可能为0,而b≠0,∴x2、y2中至少有一个不为0.2°充要条件不能写成y1y2(∵x1、x2有可能为0).x1x2ab3°从而向量共线的充要条件有两种形式:a∥b(b≠0)

x1y2x2y10.(三)应用示例

思路1 例1 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出的结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a+b=(2,1)+(-3,4)=(-1,5);a-b=(2,1)-(-3,4)=(5,-3);3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式.变式训练

131.(2007海南高考,4)已知平面向量a=(1,1),b=(1,-1),则向量ab

22等于()A.(-2,-1)

B.(-2,1)

C.(-1,0)D.(-1,2)答案:D 2.(2007全国高考,3)已知向量a=(-5,6),b=(6,5),则a与b„()

A.垂直

B.不垂直也不平行

C.平行且同向 D.平行且反向

答案:A 3

图2 例2 如图2,已知ABCD的三个顶点A、B、C的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D的坐标.活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量OD的坐标,进而得到点D的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D的坐标表示为已知点的坐标.解:方法一:如图2,设顶点D的坐标为(x,y).∵AB=(-1-(-2),3-1)=(1,2),DC=(3-x,4-y).由AB=DC,得13x,(1,2)=(3-x,4-y).∴

24x.x2,∴ y2.∴顶点D的坐标为(2,2).方法二:如图2,由向量加法的平行四边形法则,可知

BDBAADBABC=(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1), 而OD=OB+BD=(-1,3)+(3,-1)=(2,2), ∴顶点D的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.变式训练

图3 如图3,已知平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,仿例二得:D1=(2,2);当平行四边形为ACDB时,仿例二得:D2=(4,6);当平行四边形为DACB时,仿上得:D3=(-6,0).例3 已知A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点之间的位置关系.活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A、B、C三点,观察图形,我们猜想A、B、C三点共线.下面给出证明.∵AB=(1-(-1),3-(-1))=(2,4), AC=(2-(-1),5-(-1))=(3,6), 又2×6-3×4=0,∴AB∥AC,且直线AB、直线AC有公共点A, ∴A、B、C三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.变式训练

已知a=(4,2),b=(6,y),且a∥b,求y. 解:∵a∥b,∴4y-2×6=0.∴y=3.思路2

例2 设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1)、(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗?即当

P1P=λPP2时,点P的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法: 由P1P=λPP2,知(x-x1,y-y1)=λ(x2-x,y2-y),x1x2x,xx1(x2x)1即 yy1(y2y)yy1y2.1这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P点位置的影响,也可鼓励学生课后探索.图4 解:(1)如图4,由向量的线性运算可知

xx2y1y21,.).OP=(OP1+OP2)=(1222所以点P的坐标是(x1x2y1y2,.)22(2)如图5,当点P是线段P1P2的一个三等分点时,有两种情况,即

P1P1=或PP22P1P=2.PP2如果P1P1=,那么 PP22

图5 PP=OPOP=OP1+11+

1P1P2 31=OP+(OP12-OP1)312=OP+OP12 33=(2x1x22y1y2,).332x1x22y1y2,).33即点P的坐标是(同理,如果

x2x2y12y2P1P,.=2,那么点P的坐标是133PP2点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.变式训练

在△ABC中,已知点A(3,7)、B(-2,5).若线段AC、BC的中点都在坐标轴上,求点C的坐标.解:(1)若AC的中点在y轴上,则BC的中点在x轴上, 设点C的坐标为(x,y),由中点坐标公式,得

3xy50,0, 22∴x=-3,y=-5, 即C点坐标为(-3,-5).(2)若AC的中点在x轴上,则BC的中点在y轴上,则同理可得C点坐标为(2,-7).综合(1)(2),知C点坐标为(-3,-5)或(2,-7).例2 已知点A(1,2),B(4,5),O为坐标原点,OP=OA+tAB.若点P在第二象限,求实数t的取值范围.活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给与提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是,将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.解:由已知AB=(4,5)-(1,2)=(3,3).∴OP=(1,2)+t(3,3)=(3t+1,3t+2).3t1021若点P在第二象限,则t

333t2021,).33点评:此题通过向量的坐标运算,将点P的坐标用t表示,由点P在第二象限可得到一个关于t的不等式组,这个不等式组的解集就是t的取值范围.变式训练 故t的取值范围是(已知OA=(cosθ,sinθ),OB=(1+sinθ,1+cosθ),其中0≤θ≤π,求|AB|的取值范围.解:∵AB=OB-OA=(1+sinθ,1+cosθ)-(cosθ,sinθ)=(1+sinθ-cosθ,1+cosθ-sinθ).∴|AB|=(1+sinθ-cosθ)+(1+cosθ-sinθ)=[1+(sinθ-cosθ)]2+[1-(sinθ-cosθ)]2 =2+2(sinθ-cosθ)2 =2+2(1-2sinθcosθ)=4-4sinθcosθ=4-2sin2θ.∵0≤θ≤π,∴0≤2θ≤2π.从而-1≤sin2θ≤1.∴4-2sin2θ∈[2,6].故|AB|的取值范围是[2,6].222 7

(四)课堂小结

1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.(五)作业

第五篇:平面向量的坐标运算教案

“平面向量的坐标运算”教学方案

教学目标:

1.知识与技能:

理解平面向量坐标的概念,掌握平面向量坐标的运算。2.过程与方法:

在对平面向量坐标表示及坐标运算的学习过程中使学生的演绎、归纳、猜想、类比的能力得到发展,利用图形解决问题,也让学生体会到数形结合的思想方法解决问题的能力的重要性。3.情感、态度与价值观:

通过本节课的学习,使学生感受到数学与实际生产、生活的密切联系,体会客观世界中事物之间普遍联系的辩证唯物主义观点。教学重点:

平面向量的坐标表示及坐标运算。教学难点:

平面向量坐标表示的意义。教学方法:

结合本节课的目标要求、重难点的确定以及学生实际思维水平,教学设计中采取启发引导、类比归纳、合作探究、实践操作等教学方法。教学手段:

投影仪、多媒体软件 教学过程 1.情境创设

教师借助多媒体动画演示人站在高处抛掷硬物的过程作为本节课的问题情境引入课题,引导学生注意观察硬物下落轨迹,提出问题:结合同学们的生活常识及物理学知识,想一想硬物的速度可做怎样的分解?

学生回答:速度可按竖直和水平两个方向进行分解

设计目的:情境与生活联系,激发学生学习兴趣,同时为下面展开的知识做

好铺垫。

2.展开探究

问题一:平面向量的基本定理内容是什么? 教师请一学生回答,同时投影出示其内容。问题二:向量能不能象平面坐标系中点一样给出坐标表示呢?我们如何表示更加

合理呢?

组织学生谈论,给出各种想法,教师做点评归纳。投影展示:将一任意向量a置于直角坐标系中,给出向量的起点、终点坐标,并 提出问题 问题三:既然向量的起点和终点的坐标是确定的,那么向量也可以用一对实数来表示吗?

设计目的:此问题引发学生联想,对平面向量坐标表示方法具有指导性作用。教师讲授:在直角坐标系内,我们分别取与 x轴、y轴方向相同的两个单位向量i,j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x,y,使得a=xi+yj ,我们把 叫做向量a的(直角)坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,(x,y)式叫做向量的坐标表示。

3.深化理解

一.平面向量坐标表示的的理解 提出问题:

(1)、如果以原点O作为起点作一向量OA=a(投影动画同步演示),那么点A的位置是否可以唯一确定呢?

(2)、点A的坐标与向量OA的坐标之间有什么关系?(3)、两个向量相等的充要条件利用坐标如何进行表示呢?

(4)、如果我们将一个平面向量在直角坐标系中作任意平移(不该表大小和方向),那么它的坐标会改变吗?

组织学生以小组为单位展开探究交流活动,在讨论后回答上述问题,可师生共同完善答案,归纳如下:

(1)、点A的位置受向量OA决定,唯一确定。

(2)、以原点O为起点的向量OA的坐标和终点A的坐标事完全相同的。(3)、两个平面向量相等的充要条件是两个向量的坐标相同。

(4)、在直角坐标系中平面向量在大小和方向不变的前提下自由移动,它们的坐标就是相同的。

设计目的:让学生在合作探究中去主动学习,不仅锻炼了解决问题的能力,还培养了探究协作的能力。

出示练习:用基底i、j分别表示向量a、b、c、d,并求出它们的坐标(图略)。教师让学生独立完成,之后借助投影让 个别学生展示完成情况,教师点评。设计目的:增进了所学新知的内化。

二、平面向量的坐标运算

提出问题:通过以上研究,我们了解了平面向量的坐标表示,向量是可以进行运

算的,如何运用所学的知识进行两个向量的和与差的坐标表示及实数 与向量积的坐标表示呢?

投影出示:已知向量a=(s,t),b=(m,n),求向量a+b,a-b, λa的坐标

学生展开讨论,可能给出多种推导方法,教师要耐心给与点评,并做最后归纳。(1)向量加减法的坐标等于向量坐标的加减法。

(2)实数与向量的积的坐标等于是属于向量坐标的积。

(3)一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点坐标 教师提问:设AB是表示向量a的有向线段,点A(s,t),B(m,n),那么向量a的坐标如何表示?

学生结合向量坐标运算可得出答案,a=(m-s,n-t),教师强调

一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标。设计目的 :此环节教师充当引导者,以学生为主体,让学生在讨论思考中享受成功的快乐。

4.例题剖析

1、已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标。

变式:已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标,使这四点成为平行四边形的四个顶点。

教师给学生充足时间独立思考,适当时可提示作图理解,而变式对学生来说

难度增大,要鼓励学生大胆尝试,独立求解,并提示要考虑图形的多种画法。设计目的:通过例题和变式综合考查学生对本节所学知识的理解和掌握程度,也促进学生应用知识解决问题的能力。

5.课堂小结

请学生对本节课内容作归纳,不足之处师生补充完善,最后教师作总结式说明。1.向量的坐标表示是向量的另一种表示形式,也可以称之为向量的代数表示,其背景是平面向量的基本定理。

2.向量的坐标表示为我们进行向量的运算提供了方便。

3.向量的坐标表示使得我们借助数的运算对图形的几何性质展开研究,体现了数形结合思想方法的应用。

前面我们还学习了这留待我们下一 节再来研究。

6.布置作业(1).课后习题

(2)如何运用向量坐标来表示和判定共线向量呢?让学生预习下节内容。

7.板书设计

平面向量的坐标运算

1.平面向量的坐标

例1

变式 定义

解:

解:(1)

(2)

(3)

2.平面向量的坐标运算

下载[高二数学]平面向量的概念及运算知识总结word格式文档
下载[高二数学]平面向量的概念及运算知识总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学概念及定义总结

    初中数学概念及定义总结(几何)这个总结我已经看过,比较全,另外我已经给很多相关命题以批注,包括可能的出题方向和注意点,在复习过程中,一方面要对所有的定义进行背诵记忆,这是解题的......

    职高高二平面向量课件(推荐五篇)

    导语:平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头......

    《平面向量的坐标运算》教学设计

    《平面向量的坐标运算》教学设计 【教学目标】 1.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量; 2.掌握平面向量的坐标运算,能准确表述向量的加法......

    平面向量的坐标运算教案1[定稿]

    平面向量的坐标运算教案1 教学目标 1.理解平面向量的坐标表示方法,包括起点是坐标原点的向量坐标表示法,起点不是坐标原点的向量坐标表示法、相等向量的坐标表示法. 2.掌握已知平......

    《平面向量的线性运算》教学反思

    复习本节课,应该说是轻松的,复习目标无非是1,向量概念的梳理,2向量的线性运算,3,共线向量定理的应用,《平面向量的线性运算》教学反思。但实际上课过程中,我感觉很累,主要问题自己想......

    2014高考数学复习:平面向量

    高考数学内部交流资料【1--4】2014高考数学复习:平面向量一选择题(每题5分,共50分)1. 向量﹒化简后等于( )A.AMB.0C.0D.AC2. 下面给出的关系式中,正确的个数是( )10·=0○2 ·=·○3○4......

    数学平面向量课后题

    数学的必修四便会学习到平面向量,这和物理必修一的内容也有一定的相关性,所以,我们更应该学好这一知识点。分享了数学平面向量的课后题及答案,一起来看看吧!一、选择题1.已知向量O......

    平面向量、三角公式知识回顾(合集)

    2013.03.18:知识回顾——平面向量、三角公式 一.平面向量: 1. 与的数量积(或内积): ab|a||b|coscos 2.平面向量的坐标运算: 设A(x),则ABOBOA 1,y1),B(x2,y2(x2x1,y2y1). 设a......