高考二轮复习数学理配套讲义9 空间点、直线、平面之间的位置关系

2021-04-14 16:00:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高考二轮复习数学理配套讲义9 空间点、直线、平面之间的位置关系》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考二轮复习数学理配套讲义9 空间点、直线、平面之间的位置关系》。

微专题9 空间点、直线、平面之间的位置关系

2018·全国卷Ⅱ·T9·异面直线所成的角

2018·浙江高考·T6·直线与平面平行

2017·全国卷Ⅱ·T10·异面直线所成的角

2017·全国卷Ⅲ·T16·圆锥、异面直线所成的角

1.以选择题、填空题的形式考查线线、线面、面面位置关系的判定与性质定理,对命题的真假进行判断,属基础题。

2.空间中的平行、垂直关系的证明也是高考必考内容,多出现在立体几何解答题中的第(1)问。

考向一

空间点、线、面的位置关系判断

【例1】(1)已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题中不正确的是()

A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥α

B.若l⊥α,l∥β,则α⊥β

C.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β

D.若α⊥β,m⊥α,n⊥β,则m⊥n

(2)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()

A.若α⊥γ,β⊥γ,则α∥β

B.若m⊥α,n⊥α,则m∥n

C.若m∥α,n∥α,则m∥n

D.若l∥α,α∥β,则l∥β

解析(1)由l⊥m,l⊥n,m⊂α,n⊂α,不能推出l⊥α,缺少条件m与n相交,故A不正确;若l⊥α,l∥β,则过l作平面γ,使γ∩β=c,则l∥c,故c⊥α,c⊂β,故α⊥β,B正确;根据面面垂直的性质定理知C正确;D正确。故选A。

(2)若α⊥γ,β⊥γ,则α与β相交或平行,故A错误;若m⊥α,n⊥α,则由直线与平面垂直的性质得m∥n,故B正确;若m∥α,n∥α,则m与n相交、平行或异面,故C错误;若l∥α,α∥β,则l⊂β或l∥β,故D错误。故选B。

答案(1)A(2)B

判断空间点、线、面位置关系,主要依据四个公理、平行关系和垂直关系的有关定义及定理,具体处理时可以构建长方体或三棱锥等模型,把要考查的点、线、面融入模型中,判断会简洁明了。如果要否定一结论,只需找到一个反例即可。

变|式|训|练

1.已知直线a,b和平面α,β,下列命题中是假命题的有________(只填序号)。

①若a∥b,则a平行于经过b的任何平面;

②若a∥α,b∥α,则a∥b;

③若a∥α,b∥β,且α⊥β,则a⊥b;

④若α∩β=a,且b∥α,则b∥a。

解析 ①若a∥b,a,b可以确定平面,则a平行于经过b的任何平面,不正确;②若a∥α,b∥α,则a∥b或a,b相交、异面,不正确;③若a∥α,b∥β,且α⊥β,则a,b关系不确定,不正确;④若α∩β=a,且b∥α,则b与a关系不确定,不正确。

答案 ①②③④

2.(2018·益阳、湘潭调研)下图中,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有()

A.①③

B.②③

C.②④

D.②③④

解析 由题意,可知题图①中,GH∥MN,因此直线GH与MN共面;题图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此直线GH与MN共面;题图④中,连接GN,G,M,N三点共面,但H∉平面GMN,所以直线GH与MN异面。故选C。

答案 C

考向二

异面直线所成的角

【例2】(2018·全国卷Ⅱ)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()

A.

B.

C.

D.

解析

解法一:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图所示,则D(0,0,0),A(1,0,0),B1(1,1,),D1(0,0,),所以=(-1,0,),=(1,1,),因为cos〈,〉===,所以异面直线AD1与DB1所成角的余弦值为。故选C。

解法二:如图,补上一相同的长方体CDEF-C1D1E1F1,连接DE1,B1E1。易知AD1∥DE1,则∠B1DE1或其补角为异面直线AD1与DB1所成角。因为在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,所以DE1===2,DB1==,B1E1===,在△B1DE1中,由余弦定理,得cos∠B1DE1==>0,所以∠B1DE1为锐角,即为异面直线AD1与DB1所成的角,即异面直线AD1与DB1所成角的余弦值为,故选C。

解法三:如图,连接BD1,交DB1于点O,取AB的中点M,连接DM,OM,易知O为BD1的中点,所以AD1∥OM,则∠MOD为异面直线AD1与DB1所成角。因为在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,AD1==2,DM==,DB1==,所以OM=AD1=1,OD=DB1=,于是在△DMO中,由余弦定理,得cos∠MOD==,即异面直线AD1与DB1所成角的余弦值为,故选C。

答案 C

求异面直线所成的角,一般是用平移法把异面直线平移为相交直线,然后再解三角形求解。

变|式|训|练

(2018·陕西质量检测)已知△ABC与△BCD均为正三角形,且AB=4。若平面ABC⊥平面BCD,且异面直线AB和CD所成的角为θ,则cosθ=()

A.-  B.

C.-

D.

解析

如图,取BC的中点O,取BD的中点E,取AC的中点F,连接OA,OE,OF,EF,则OE∥CD,OF∥AB,则∠EOF或其补角为异面直线AB与CD所成的角,依题得OE=CD=2,OF=AB=2,过点F作FG⊥BC于点G,易得FG⊥平面BCD,且FG=OA=,G为OC的中点,则OG=1,又OE=2,∠EOG=60°,所以由余弦定理得EG=

==,由勾股定理得EF2=FG2+EG2=()2+()2=6,在△OEF中,由余弦定理得cos∠EOF===,所以cosθ=。故选D。

答案 D

考向三

空间点、线、面的综合问题

【例3】(1)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则()

A.A1E⊥DC1

B.A1E⊥BD

C.A1E⊥BC1

D.A1E⊥AC

(2)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,给出下列结论:

①四面体ABCD每组对棱相互垂直;

②四面体ABCD每个面的面积相等;

③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°且小于180°;

④连接四面体ABCD每组对棱中点的线段相互垂直平分;

⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长。

其中正确结论的序号是________。

解析(1)解法一:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,A1B1∩B1C=B1,所以BC1⊥平面A1B1CD。又A1E⊂平面A1B1CD,所以A1E⊥BC1。故选C。

解法二:因为A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,所以B、D错误;因为A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,所以A1E⊥BC1,(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,所以BC1⊥平面CEA1B1。又A1E⊂平面CEA1B1,所以A1E⊥BC1。),C正确;因为A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直。A错误。故选C。

(2)对于①,如图①,AE,CF分别为BD边上的高,由AD=BC,AB=CD,BD=DB可知△ABD≌△CDB,所以AE=CF,DE=BF,当且仅当AD=AB,CD=BC时,E,F重合,此时AC⊥BD,所以当四面体ABCD为正四面体时,每组对棱才相互垂直,故①错误;对于②,由题设可知四面体的四个面全等,所以四面体ABCD每个面的面积相等,故②正确;对于③,当四面体为正四面体时,同一个顶点出发的任意两条棱的夹角均为60°,此时四面体ABCD每个顶点出发的三条棱两两夹角之和等于180°,故③错误;对于④,如图②,G,H,I,J为各边中点,因为AC=BD,所以四边形GHIJ为菱形,所以GI,HJ相互垂直平分,其他同理可得,所以连接四面体ABCD每组对棱中点的线段相互垂直平分,故④正确;对于⑤,从A点出发的三条棱为AB,AC,AD,因为AC=BD,所以AB,AC,AD可以构成三角形,其他同理可得,所以从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长,故⑤正确。综上所述,正确的结论为②④⑤。

答案(1)C(2)②④⑤

破解此类问题需:(1)认真审题,并细观所给的图形,利用空间直线、平面平行与垂直的判定定理和性质定理求解;(2)懂得转化,即把面面关系问题转化为线面关系问题,再把线面关系问题转化为线线关系问题,通过转化,把问题简单化,问题的解决也就水到渠成了。

变|式|训|练

1.若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有()

A.0条

B.1条

C.2条

D.0条或2条

解析 如图,因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面α平行的棱有2条。故选C。

答案 C

2.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A

B

C     D

解析

解法一:对于B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ。同理可证选项C,D中均有AB∥平面MNQ。故选A。

解法二:对于A,设正方体的底面对角线的交点为O(如图所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行。故选A。

答案 A

1.(考向一)(2018·重庆六校联考)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()

A.存在一条直线a,a∥α,a∥β

B.存在一条直线a,a⊂α,a∥β

C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α

D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α

解析 对于A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B,C的内容也是α∥β的一个必要条件而不是充分条件;对于D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件。故选D。

答案 D

2.(考向二)(2018·全国卷Ⅰ)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()

A.8

B.6

C.8

D.8

解析

在长方体ABCD-A1B1C1D1中,连接BC1,根据线面角的定义可知∠AC1B=30°,因为AB=2,所以BC1=2,从而求得CC1=2,所以该长方体的体积为V=2×2×2=8。故选C。

答案 C

3.(考向三)在底面是菱形的四棱锥P-ABCD中,PA⊥底面ABCD,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则等于()

A.    B.

C.    D.

解析 如图所示,延长BA,CF交于点G,连接EG,与PA的交点就是K点,则AG=6,过点A作AH∥PB,与EG交于点H,则=====。故选A。

答案 A

4.(考向三)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,若P为三角形A1B1C1内一点(不含边界),则点P在底面ABC的投影可能在()

A.△ABC的内部

B.△ABC的外部

C.直线AB上

D.以上均有可能

解析 因为AC⊥AB,AC⊥BC1,所以AC⊥平面ABC1,AC⊂平面ABC,所以平面ABC1⊥平面ABC,所以C1在平面ABC上的射影H必在两平面的交线

AB上。若P为三角形A1B1C1内一点(不含边界),则点P在底面ABC的投影可能在△ABC的外部。故选B。

答案 B

5.(考向三)(2018·成都诊断)在长方体ABCD-A1B1C1D1中,已知底面ABCD为正方形,P为A1D1的中点,AD=2,AA1=,点Q是正方形ABCD所在平面内的一个动点,且QC=QP,则线段BQ的长度的最大值为________。

解析 以D为坐标原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴,建立空间直角坐标系,则P(1,0,),C(0,2,0),B(2,2,0),Q(x,y,0),因为QC=QP,所以=⇒(x-2)2+(y+2)2=4,所以(y+2)2=4-(x-2)2≤4⇒|y+2|≤2⇒-4≤y≤0,BQ===,根据-4≤y≤0可得4≤4-8y≤36,所以2≤BQ≤6,故线段BQ的长度的最大值为6。

答案 6

下载高考二轮复习数学理配套讲义9 空间点、直线、平面之间的位置关系word格式文档
下载高考二轮复习数学理配套讲义9 空间点、直线、平面之间的位置关系.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐