第一篇:【优教通,同步备课】高中数学(北师大版)选修2-1教案:第1章 全称量词与存在量词 参考教案2
1.3 全称量词与全称命题
一、创设情境
在前面的学习过程中,我们曾经遇到过一类重要的问题:给含有“至多、至少、有一个┅┅”等量词的命题进行否定,确定它们的非命题。大家都曾感到困惑和无助,今天我们将专门学习和讨论这类问题,以解心中的郁结。问题1:请你给下列划横线的地方填上适当的词
①一
纸;②一
牛;③一
狗;④一
马;⑤一
人家;⑥一
小船 分析:①张②头③条④匹⑤户⑥叶
什么是量词?这些表示人、事物或动作的单位的词称为量词。汉语的物量词纷繁复杂,又有兼表形象特征的作用,选用时主要应该讲求形象性,同时要遵从习惯性,并注意灵活性。不遵守量词使用的这些原则,就会闹出“一匹牛”“一头狗”“一只鱼”的笑话来。
二、活动尝试
所有已知人类语言都使用量化,即使是那些没有完整的数字系统的语言,量词是人们相互交往的重要词语。我们今天研究的量词不是究其语境和使用习惯问题,而是更多的给予它数学的意境。问题2:下列命题中含有哪些量词?(1)对所有的实数x,都有x2≥0;(2)存在实数x,满足x2≥0;
(3)至少有一个实数x,使得x2-2=0成立;(4)存在有理数x,使得x2-2=0成立;
(5)对于任何自然数n,有一个自然数s使得s=n×n;(6)有一个自然数s使得对于所有自然数n,有s=n×n;
分析:上述命题中含有:“所有的”、“存在”、“至少”、“任何”等表示全体和部分的量词。
三、师生探究
命题中除了主词、谓词、联词以外,还有量词。命题的量词,表示的是主词数量的概念。在谓词逻辑中,量词被分为两类:一类是全称量词,另一类是存在量词。
等词可统称为全称量词,记作x、y等,表示个体域里的所有个体。(2)存在量词
日常生活和数学中所用的“存在”,“有一个”,“有的”,“至少有一个”等词统称为存在量词,记作x,y等,表示个体域里有的个体。
3.含有全称量词的命题称为全称命题,含有存在量词的命题称为存在性命题。全称命题的格式:“对M中的所有x,p(x)”的命题,记为:xM,p(x)存在性命题的格式:“存在集合M中的元素x,q(x)”的命题,记为:xM,q(x)注:全称量词就是“任意”,写成上下颠倒过来的大写字母A,实际上就是英语“any”中的首字母。存在量词就是“存在”、“有”,写成左右反过来的大写字母E,实际上就是英语“exist”中的首字母。存在量词的“否”就是全称量词。
五、巩固运用
例1判断以下命题的真假:
(1)xR,x2x(2)xR,x2x
(3)xQ,x280(4)xR,x220 分析:(1)真;(2)假;(3)假;(4)真; 例2指出下述推理过程的逻辑上的错误: 第一步:设a=b,则有a2=ab
第二步:等式两边都减去b2,得a2-b2=ab-b2 第三步:因式分解得(a+b)(a-b)=b(a-b)第四步:等式两边都除以a-b得,a+b=b 第五步:由a=b代人得,2b=b 第六步:两边都除以b得,2=1 分析:第四步错:因a-b=0,等式两边不能除以a-b
第六步错:因b可能为0,两边不能立即除以b,需讨论。
心得:(a+b)(a-b)=b(a-b)a+b=b是存在性命题,不是全称命题,由此得到的结论不可靠。
同理,由2b=b2=1是存在性命题,不是全称命题。
例3判断下列语句是不是全称命题或者存在性命题,如果是,用量词符号表达出来。
第二篇:【优教通,同步备课】高中数学(北师大版)选修1-1教案:第1章 全称量词与存在量词 导学案1
1.3 全称量词与存在量词
【学习目标】1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;2.能准确地利用全称量词与存在量词叙述数学内容 【重点难点】理解全称量词与存在量词的意义.【知识链接】德国著名的数学家哥德巴赫提出这样一个问题“任意取一个奇数,可以把它写成三个质数之和,比如77,:77=53+17+7”,同年欧拉首先肯定了哥德巴赫猜想的正确,并且认为:每一个偶数都是两个质数之和,虽然通过大量检验这个命题是正确的,但是还需要证明。这也就是当今人们称之为哥德巴赫猜想,并誉为数学皇冠上的明珠。200多年来我国著名数学家陈景润才证明了“1+2”即:凡是比某一个正整数大的任何偶数,都能表示成一个质数加上两个质数相乘,或者表示成一个质数加上一个质数,从陈景润的“1+2”到“1+1”似乎仅一步之遥。它是一个迄今为止仍然是一个没有得到正面证明也没有被推翻的命题.【学习过程】
一、自学质疑:
在我们的日常生活中,我们常常遇到这样的命题:(1)所有中国公民的合法权利都受到中华人民共和国宪法的保护;
2(2)对任意实数x,都有x0; 2(3)存在有理数x,使x20.问题1:上述命题中有那些关键的量词? 1.全称量词与存在量词:
全称量词定义: ;
表示形式: ; 符号表示:____________________________________________; 读作:________________________________________________.存在量词定义:________________________________________;
表示形式:_____________________________________________;
总结:存在性命题xM,p(x)为真,只要在给定的集合M中找出一个元素x,使命题p(x)为真,否则为假;全称命题xM,p(x)为真,必须对给定的集合的每一个元素x, p(x)为真,但要判断一个全称命题为假,只要在给定的集合内找出一个x0,使p(x0)为假.三、矫正反馈:
1.下列全称命题中,真命题的是___________.A.末位是偶数的整数总能被2整除; B.角平分线上的点到这个角两边距离相等;
C.正三棱锥的任意两个面所成的二面角相等.2.下列存在性命题中,真命题的是____________.A.xR,x0 B.至少有一个整数,它既不是质数也不是合数 C.x是无理数,x是无理数 D.x是无理数,x是有理数 3.下列全称命题中真命题的个数是.①末位是0的整数,可以被2整除;②角平分线上的点到这个角的两边的距离相等;③正四面体中两侧面所成的二面角相等.224.下列存在命题中假命题的个数是.①有的实数是无限不循环小数;②有些三角形不是等腰三角形;③有的菱形是正方形.5.下列存在命题中真命题的个数是.①xR,x0;②至少有一个整数,它既不是合数,也不是素数;③x{x│x是无理数},x2是无理数.(1)实数的平方大于等于0;
(2)存在一对实数,使2x3y30成立;(3)勾股定理.8.写出下列命题的否定:(1)所有自然数的平方是正数;
(2)任何实数x都是方程5x-12=0的根;
(3)对于任意实数x,存在实数y,使xy0;
(4)有些质数是奇数.-
第三篇:§1.3.1全称量词与存在量词教案111
1.4全称量词与存在量词(教案)
印江二中高二数学课题研究组 试教人:吴顺宏
[教学目标]
1通过生活和数学中的丰富实例,理解全称量词与存在量词的意义 2能准确地利用全称量词与存在量词叙述数学内容 [教学重点、难点] 重点:理解全称量词与存在量词的意义
难点:全称命题、特称命题的真假判断 [教学过程] 问题1:请大家思考:下列语句是命题吗?你能发现这些语句之间的一些关系吗?
(1)、x3;(2)、2x1是整数;
(3)、对所有的xR,x3;(4)、对任意一个xZ,2x1是整数;
(5)、所有有中国国籍的人都是黄种人。
学生:(1)、(2)不是命题,(3)、(4)、(5)是命题。他们之间的关系是:后者比前者多了一些量词,通过这些量词来限定变量的范围使不是命题的语句成为了命题。教师:观察,分析的很好。
短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词,并用符号“”表示。含有全称量词的命题叫做全称命题。(3)、(4)、(5)是全称命题。
通常将含有变量x的语句用p(x),q(x),r(x),„表示,变量x的取植范围用M表示,那么,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为“xM,p(x)”,读作“对任意x属于M,有p(x)成立”。
问题2:如何判断一个全称命题的真假呢? 例1;判断下列全称命题的真假
(1)、所有的素数都是奇数;(2)、xR,x10;(3)、对每一个无理数x,x也是无理数。解析:(1)、2是素数,但是2不是奇数。故此命题是假命题。(2)、任取实数x,x0,则x110.故此命题是真命题。(3)、2是无理数,但是
2222222是有理数。故此命题是假命题。
规律:全称命题xM,p(x)为真,必须对给定的集合中每一个元素x,都使得 p(x)为真,但要判断一个全称命题为假,只要在给定的集合内找出一个x0,使p(x0)为假
课本23页练习1:(1)、每个指数函数都是单调函数(真);(2)、任何实数都有算术平方根(假)
(3)、xx|x是无理数
,x2是无理数(假)
问题3:请大家思考:下列语句是命题吗?(1)与(3)、(2)与(4)之间有什么关系?
(1)、2x13;
(2)、x能被2和3整除;
(3)、存在一个x0R,使2x013。(4)、至少有一个x0Z,x0能被2和3整除;
(5)、有的学生不喜欢体育锻炼。学生:(1)、(2)不是命题,(3)、(4)、(5)是命题。他们之间的关系是:后者比前者多了一些量词,通过这些量词来限定变量的范围使不是命题的语句成为了命题。
短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示。含有存在量词的命题叫做特称命题。(3)、(4)、(5)是特称命题。
通常将含有变量x的语句用p(x),q(x),r(x),„表示,变量x的取植范围用M表示,那么,特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为“x0M,p(x0)”,读作“存在M中的元素x0,使p(x0)成立”。问题4:如何判断一个特称命题的真假?
例2判断下列特称命题的真假
(1)、有一个实数x0,使x02x030;(2)、存在两个相交平面垂直于同一直线;(3)、有些整数只有两个正因数
2解析:(1)、x02x03x0122。故不存在实数x0,使x02x030。所以此命题是假
222命题。(2)、由于垂直于同一直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一直线。(3)、由于存在整数3只有两个正因数1和3。故此特称命题为真命题。规律:存在性命题xM,p(x)为真,只要在给定的集合M中找出一个元素x,使命题p(x)为真,否则为假;
课本23页练习2:(1)、x0R,x00
(真);(2)、至少有一个整数,它既不是合数也不是素数
(真)
(3)、x0x|x是无理数,x02是无理数(真)
课堂小结:通过事例引入全称命题与特称命题的概念,随后介绍了如何判断全称命题与特称命题的真假? 课后作业 课本26页习题1.3 A组 1、2.巩固练习:自我检测
一、概念填空:短语“
”、“
”在逻辑中通常叫做全称量词,用符号“____”表示,含有全称量词的命题叫做
.全称命题“对M中任意一个x,有p(x)成立”可用符号_________________表示。短语“
”、“
”在逻辑中通常叫做存在量词,用符号“ ”表示,含有存在量词的命题,叫做______.特称命题“存在M中的一个x,使p(x)成立”,可用符号_____________表示。
二、判断下列命题是全称命题,还是特称命题,并判断它们的真假。
1、每个三角形都有外接圆;
2、所有有中国国籍的人都是黄种人;
3、有一个四边形没有外接圆;
4、对任意实数x,存在实数y,使x+y>0;
5、我认真地过每一分钟;
6、有些奇函数的图象不过原点;
7、x,y,zN,x2y2z2 ;
8、x1,2,x2a0
15、每一个人有良知中国人都能记住小日本对中国人民的“友好”。
三、将下列命题用量词符号“”或“”表示。
1)、实数的平方大于或等于0 2)、对某些实数x有2x+1>0
四、下列命题为真命题的是()A.xR,x30 B.xN,x1 C.xZ,使x1 D.xQ,x3
五、已知命题P:“x1,2,xa0” 命题Q:“xR,x2ax2a0”
225222若命题“PQ”为真命题,则实数a的取值范围为()A.a2或a1 B.a2或1a2 C.a1 D.2a1
含全称量词与存在量词句子
1、所有有中国国籍的人都是黄种人;
2、有的学生不喜欢体育锻炼;
3、有些面积相等的两个三角形全等;
4、所有自然数的平方是正数;
5、任何实数x都是方程5x-12=0的根;
6、对任意实数x,存在实数y,使x+y>0;
7、有些质数是奇数;
8、有的学生不喜欢穿校服;
9、所有的学生喜欢穿校服;
10、一切反动派都是纸老虎;
11、我认真地过每一分钟;
12、有一个四边形没有外接圆;
13、印江二中之所以搞“校风校纪”整治是因为有些学生无视学校校规校纪;
14、每一个人有良知中国人都能记住小日本对中国人民的“友好”。
1.4全称量词与存在量词(学案)
问题1:请大家思考:下列语句是命题吗?你能发现这些语句之间的一些关系吗?
(1)、x3(2)、2x1是整数
(3)、对所有的xR,x(4)、对任意一个xZ,2x1是整数
全称命题“对M中任意一个x,有p(x)成立”可用符号简记为“xM,p(x)”,读作“对任意x属于M,有p(x)成立”。
问题2:如何判断一个全称命题的真假呢?
例1;判断下列全称命题的真假
(1)、所有的素数都是奇数(2)、xR,x210(3)、对每一个无理数x,x2也是无理数
解析:(1)、2是素数,但是2不是奇数。故此命题是假命题。(2)、任取实数(3)、x,x0,则x110.故此命题是真命题。222是无理数,但是
222是有理数。故此命题是假命题。
规律:全称命题xM,p(x)为真,必须对给定的集合中每一个元素x,都使得 p(x)为真,但要判断一个全称命题为假,只要在给定的集合内找出一个x0,使p(x0)为假
问题3:请大家思考:下列语句是命题吗?(1)与(3)、(2)与(4)之间有什么关系?(1)、2x1
3(2)、x能被2和3整除
(3)、存在一个x0R,使2x01(4)、至少有一个x0Z,x0能被2和3整除
特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为“x0M,p(x0)”,读作“存在M中的元素x0,使p(x0)成立”。
问题4:如何判断一个特称命题的真假? 例
2、判断下列特称命题的真假
(1)、有一个实数x0,使x022x030;
(2)、存在两个相交平面垂直于同一直线;(3)、有些整数只有两个正因数。
解析:(1)、x022x03x0122。故不存在实数x0,使x022x030。所以此命
2题是假命题
(2)、由于垂直于同一直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一直线。
(3)、由于存在整数3只有两个正因数1和3。故此特称命题为真命题。规律:存在性命题xM,p(x)为真,只要在给定的集合M中找出一个元素x,使命题p(x)为真,否则为假;
课后作业:课本26页习题1.3 A组 1、2.
第四篇:§1.3.1全称量词与存在量词教案
1.4全称量词与存在量词
巨野县
例1;判断下列全称命题的真假(1)、所有的素数都是奇数(2)、xR,x210
(3)、对每一个无理数x,x也是无理数
解析:(1)、2是素数,但是2不是奇数。故此命题是假命题。
(2)、任取实数x,x20,则x2110.故此命题是真命题。(3)、规律:全称命题xM,p(x)为真,必须对给定的集合的每一个元素x, p(x)为真,但要判断一个全称命题为假,只要在给定的集合内找出一个x0,使p(x0)为假
课本23页练习1:(1)、每个指数函数都是单调函数(真)
(2)、任何实数都有算术平方根(假)
(3)、xx|x是无理数例2判断下列特称命题的真假
2(1)、有一个实数x0,使x02x030 22是无理数,但是222是有理数。故此命题是假命题。
,x2是无理数(假)
(2)、存在两个相交平面垂直于同一直线(3)、有些整数只有两个正因数
22解析:(1)、x02x030。所以此命题是假2x03x0122。故不存在实数x0,使x02命题
规律:存在性命题xM,p(x)为真,只要在给定的集合M中找出一个元素x,使命题p(x)为真,否则为假;
课本23页练习2:(1)、x0R,x00
(真)
(2)、至少有一个整数,它既不是合数也不是素数
(真)(3)、x0x|x是无理数,x02是无理数(真)
巩固练习:
四、自我检测
1、判断下列命题是全称命题,还是特称命题,并判断它们的真假。
1、每个三角形都有外接圆
2、有一个四边形没有外接圆
3、x,y,zN,xyz
4、有些奇函数的图象不过原点
222
2、将下列命题用量词符号“”或“”表示。1)、实数的平方大于或等于0 2)、对某些实数x有2x+1>0
3、下列命题为真命题的是()A.xR,x230 B.xN,x21 C.xZ,使x51 D.xQ,x23
4、已知命题P:“x1,2,x2a0”
命题Q:“xR,x22ax2a0”
若命题“PQ”为真命题,则实数a的取值范围为()
A.a2或a1 B.a2或1a2 C.a1 D.2a1
五、课堂小结:通过事例引入全称命题与特称命题的概念,随后又介绍了如何判断全称命题与特称命题的真假?
六、课后作业
必做题:课本26页习题1.3 A组 1、2.选做题:课本29页 B组2
第五篇:1.4全称量词与存在量词 教学设计 教案
教学准备
1.教学目标
(1)知识目标:
通过生活和数学中的实例,理解对含有一个量词的命题的否定的意义.能正确地对含有一个量词的命题进行否定;
(2)过程与方法目标:
进一步提高利用全称量词与存在量词准确、简洁地叙述数学内容的能力;(3)情感与能力目标:
使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力。
2.教学重点/难点
【教学重点】:
通过探究,了解含有一个量词的命题与他们的否定在形式上的变化规律,会正确的对含有一个量词的命题进行否定。
【教学难点】:
正确的对含有一个量词的命题进行否定。
3.教学用具
多媒体
4.标签
1.4.3 含有一个量词的命题的否定
教学过程
一、复习引入
二、探究新知
注意区别:
三、自主学习
1、引导学生阅读教科书P24上的例3中每个全称命题,让学生尝试写出这些全称命题的否定,纠正可能出现的逻辑错误。
2、引导学生阅读教科书上的例4中每个特称命题,让学生尝试写出这些特称命题的否定,纠正可能出现的逻辑错误。
四、巩固与联系
课堂小结
1。回忆几个概念:全称量词,存在量词,全称命题的概念及表示法 2.含有一个量词的否定
3.语言运用转化,语言用词准确, 书写合理规范.课后习题