第一篇:2014届高考数学一轮必备考情分析学案:13.2《直接证明与间接证明》
13.2直接证明与间接证明
考情分析
1.在历年的高考中,证明方法是常考内容,考查的主要方式是对它们原理的理解和用法.难度多为中档题,也有高档题.
2.从考查形式上看,主要以不等式、立体几何、解析几何、函数与方程、数列等知识为载体,考查综合法、分析法、反证法等方法.
基础知识
1.直接证明
(1)综合法
①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. ②框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→„→Qn⇒Q
(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论).
(2)分析法
①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法.
②框图表示:Q⇐P1→P1⇐P2→P2⇐P3→„→
得到一个明显成立的条件.2.间接证明
一般地,由证明p⇒q转向证明:綈q⇒r⇒„⇒t.t与假设矛盾,或与某个真命题矛盾.从而判定綈q为假,推出q为真的方法,叫做反证法. 注意事项 1.综合法与分析法的关系
分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.
2.(1)利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.
(2)用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)„”“即要证„”“就要证„”等分析到一个明显成立的结论P,再说明所要证明的数学问题成立. 题型一 综合法的应用
a2b2c
2【例1】►设a,b,c>0,证明:bcaa+b+c.证明 ∵a,b,c>0,根据均值不等式,a2b2c2
有bb≥2a,cc≥2b,aa≥2c.a2b2c2
三式相加:bcaa+b+c≥2(a+b+c).当且仅当a=b=c时取等号. a2b2c2
即bcaa+b+c.1
1【变式1】 设a,b为互不相等的正数,且a+b=1,证明:a+b>4.1111ba证明 a+b=a+b·(a+b)=2+ab2+2=4.11
又a与b不相等.故a+b>4.题型二 分析法的应用
a+mb2a2+mb2
≤【例2】►已知m>0,a,b∈R,求证:.1+m1+m证明 ∵m>0,∴1+m>0.所以要证原不等式成立,只需证明(a+mb)2≤(1+m)(a2+mb2),即证m(a2-2ab+b2)≥0,即证(a-b)2≥0,而(a-b)2≥0显然成立,故原不等式得证.
【变式2】 已知a,b,m都是正数,且a<b.a+ma求证:.b+mb证明 要证明
a+ma
>,由于a,b,m都是正数,b+mb
只需证a(b+m)<b(a+m),只需证am<bm,由于m>0,所以,只需证a<b.已知a<b,所以原不等式成立.
(说明:本题还可用作差比较法、综合法、反证法)题型三 反证法的应用
x-
2【例3】已知函数f(x)=a+(a>1).
x+
1x
(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用反证法证明f(x)=0没有负根.
证明(1)法一 任取x1,x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,ax2-x1>1,且ax1>0.x2-2x1-2
所以ax2-ax1=ax1(ax2-x1-1)>0.又因为x1+1>0,x2+1>0,所以x2+1x1+1x2-2x1+1-x1-2x2+13x2-x1=0,x2+1x1+1x2+1x1+1x2-2x1-2
于是f(x2)-f(x1)=ax2-ax1+0,x2+1x1+1故函数f(x)在(-1,+∞)上为增函数. 法二 f′(x)=axln a+
0,x+1∴f(x)在(-1,+∞)上为增函数.
x0-2
(2)假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-,又0<ax0<1,所以
x0+1x0-210<1,即2<x0<2,与x0<0(x0≠-1)假设矛盾.故f(x0)=0没有负根.
x0+1【变式3】 已知a,b为非零向量,且a,b不平行,求证:向量a+b与a-b不平行.
证明 假设向量a+b与a-b平行,即存在实数λ使a+b=λ(a-b)成立,则(1-λ)a+(1+λ)b=0,∵a,b不平行,1-λ=0,λ=1,∴得 1+λ=0,λ=-1,
所以方程组无解,故假设不成立,故原命题成立.重难点突破
【例4】设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0.(1)证明l1与l2相交;
(2)证明l1与l2的交点在椭圆2x2+y2=1上.证明(1)假设l1与l2不相交,则l1与l2平行或重合,有k1=k2,代入k1k2+2=0,得k21+2=0.这与k1为实数的事实相矛盾,从而k1≠k2,即l1与l2相交. y=k1x+1,(2)由方程组
y=k2x-1,x=
k2-k1,解得交点P的坐标(x,y)为k2+k1
y=k2-k1.22k2+k12
从而2x+y=2k-k+
21k2-k1
8+k2k22+k1+2k1k21+k2+4=1,k2+k1-2k1k2k1+k2+
4此即表明交点P(x,y)在椭圆2x2+y2=1上.
巩固提高
1. pab+cd,qma+ncmnm、n、a、b、c、d均为正数),则p、q的大小为().
A.p≥qB.p≤qC.p>qD.不确定
解析 q=
madnbc
ab+nmcdab+2abcd+cd
madabc
ab+cd=p,当且仅当nm时取等号. 答案 B
2.设a=lg 2+lg 5,b=ex(x<0),则a与b大小关系为().A.a>bC.a=b
B.a<b D.a≤b
解析 a=lg 2+lg 5=1,b=ex,当x<0时,0<b<1.∴a>b.答案 A
3.否定“自然数a,b,c中恰有一个偶数”时,正确的反设为(). A.a,b,c都是奇数 B.a,b,c都是偶数 C.a,b,c中至少有两个偶数
D.a,b,c中至少有两个偶数或都是奇数
解析 ∵a,b,c恰有一个偶数,即a,b,c中只有一个偶数,其反面是有两个或两个以上偶数或没有一个偶数即全都是奇数,故只有D正确. 答案 D
4.设a、b∈R,若a-|b|>0,则下列不等式中正确的是().A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0 解析 ∵a-|b|>0,∴|b|<a,∴a>0,∴-a<b<a,∴b+a>0.答案 D
5.在用反证法证明数学命题时,如果原命题的否定事项不止一个时,必须将结论的否定情况逐一驳倒,才能肯定原命题的正确.
例如:在△ABC中,若AB=AC,P是△ABC内一点,∠APB>∠APC,求证:∠BAP<∠CAP,用反证法证明时应分:假设________和________两类. 答案 ∠BAP=∠CAP ∠BAP>∠CAP
第二篇:直接证明与间接证明-分析法学案(!)
2.2.2直接证明与间接证明—分析法
班级:姓名:
【学习目标】:
(1)结合教学实例,了解直接证明的两种基本方法之一:分析法(2)通过教学实例,了解综合法的思考过程、特点
(3)通过教学实例了解分析法的思考过程、特点;体会分析法和综合法的联系与区别【学习过程】:
变式练习1:求证7225
自主学习
1:从要证明的,逐步需寻求是它成立的,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、、、等),这种证明方法叫分析法。
2:分析法是一种…,它的特点是。
合作学习
1:综合法与分析法的推理过程是合情推理还是演绎推理?
2:综合法与分析法的区别是什么?
课堂练习
例1:求证:372
例2.如图,SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F, 求证:AF⊥SC
变式训练2:已知a0,求证a21a2
2a1a2
【课后检测】:
1:校本教材P55页作业与测试。
第三篇:直接证明与间接证明-反证法习题课学案
2.2.2直接证明与间接证明—反证法
班级:姓名:
【学习目标】:
(1)了解间接证明的一种方法—反证法及其思维过程,特点
(2)通过反证法的学习,体会直接证明与间接证明之间的辩证关系,掌握对立与统一的思想和方法(3)通过反证法的学习,培养慎密思维的习惯,开拓数学视野,认识数学的科学价值和人文价值。
【学习过程】:
1:反正法是的一种基本方法,假设原命题,经过正确的推理,最后的出,应此说明假设,从而证明了原命题成立,这样的证明方法叫反证法。
2:用反证法证明命题的步骤,大体上分为:
(1)反证:假设原命题的结论,即假设结论的反面成立;(2)归谬:从出发,通过推理论证,得出矛盾;(3)结论:由矛盾判定假设不正确,从而肯定原命题的结论正确。课堂练习
例1:求证:两条相交直线有且只有一个交点例
:
已
知
a,b,c
是互不相等的实数,求证:
yax22bxc,ybx22cxa和ycx22axb确定的三条抛物线至少有一条与x轴有
两个不同的交点,变式训练:若下列三个方程:x24ax4a30,x2(a1)xa2=0,x22ax2a0
中至少有一个方程有实根,求a的范围。
例3:求证当x2bxc20有两个不相等的非零实根时bc0
变式训练:已知实数p满足不等式(2p1)(p2)0,用反证法证明:关于x的方程x22x5p20无实根
【课后检测】: 校本教材P75课时作业
第四篇:2.2直接证明与间接证明(学生学案)
SCH数学题库(学生学案)班级座号姓名请到QQ群208434765或高二数学备课组百度文库下载答案
例
2.2直接证明与间接证明(学生学案)(1)2.2.1综合法和分析法(1)--综合法
1(课本P36例):已知a,b>0,求证
2a(b
c)
b(2c)a4abc
布置作业:
A组:
1、若a0,b0,且a+b=4,则下列不等式中恒成立的个数是____(个)(写出所有正确的情况)
例2(课本P37例3):在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列, a,b,c成等比数111111
②1③ab2④2
ab2abab282、(课本P44习题2.2A组:NO:1)已知A,B都是锐
①
列,求证△ABC为等边三角形.例3:已知a,bR,求证aabbabba
.例
4、若实数x1,求证:
3(1x2x4)(1xx2)2.例5.设函数f(x)对任意x,yR,f(xy)f()x,且f(yx0时,f(x)0.(1)证明f(x)为奇函数;
(2)证明f(x)在R上为减函数.
角,且AB
,(1tanA)(1tanB)2,,求证:AB
.3、(课本P44习题2.2 A组:NO:2)
4、在△ABC中,已知(abc)(abc)3a,b且2cosAsiBnsCi.判断n△ABC的形状. 都有
第五篇:第2讲 直接证明与间接证明
第2讲 直接证明与间接证明
【2013年高考会这样考】
1.在历年的高考中,证明方法是常考内容,考查的主要方式是对它们原理的理解和用法.难度多为中档题,也有高档题.
2.从考查形式上看,主要以不等式、立体几何、解析几何、函数与方程、数列等知识为载体,考查综合法、分析法、反证法等方法.
【复习指导】
在备考中,对本部分的内容,要抓住关键,即分析法、综合法、反证法,要搞清三种方法的特点,把握三种方法在解决问题中的一般步骤,熟悉三种方法适用于解决的问题的类型,同时也要加强训练,达到熟能生巧,有效运用它们的目的.
基础梳理
1.直接证明
(1)综合法
①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. ②框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→„→Qn⇒Q
(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论).
(2)分析法
①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法.
②框图表示:Q⇐P1→P1⇐P2→P2⇐P3→„→
得到一个明显成立的条件.2.间接证明
一般地,由证明p⇒q转向证明:綈q⇒r⇒„⇒t
.t与假设矛盾,或与某个真命题矛盾.从而判定綈q为假,推出q为真的方法,叫做反证法.
一个关系 综合法与分析法的关系
分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基
础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.
两个防范
题推理而推出矛盾结果,其推理过程是错误的.
证„”“就要证„”等分析到一个明显成立的结论P,再说明所要证明的数学问题成立.
双基自测
1.(人教A版教材习题改编)p=+,q=ma+nc正数),则p、q的大小为().
A.p≥qB.p≤qC.p>qD.不确定
解析 q= ab++cd≥ab+2abcd+cd nm+m、n、a、b、c、d均为mn
madabc=ab+cd=p,当且仅当= nm
答案 B
2.设a=lg 2+lg 5,b=ex(x<0),则a与b大小关系为().
A.a>b
C.a=b
解析 a=lg 2+lg 5=1,b=ex,当x<0时,0<b<1.∴a>b.答案 A
3.否定“自然数a,b,c中恰有一个偶数”时,正确的反设为().
A.a,b,c都是奇数
B.a,b,c都是偶数
C.a,b,c中至少有两个偶数
D.a,b,c中至少有两个偶数或都是奇数
解析 ∵a,b,c恰有一个偶数,即a,b,c中只有一个偶数,其反面是有两个或两个以上偶数或没有一个偶数即全都是奇数,故只有D正确.
答案 D
4.(2012·广州调研)设a、b∈R,若a-|b|>0,则下列不等式中正确的是().
A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0
解析 ∵a-|b|>0,∴|b|<a,∴a>0,∴-a<b<a,∴b+a>0.答案 D B.a<b D.a≤b
5.在用反证法证明数学命题时,如果原命题的否定事项不止一个时,必须将结论的否定情况逐一驳倒,才能肯定原命题的正确.
例如:在△ABC中,若AB=AC,P是△ABC内一点,∠APB>∠APC,求证:∠BAP<∠CAP,用反证法证明时应分:假设________和________两类.
答案 ∠BAP=∠CAP ∠BAP>∠CAP
考向一 综合法的应用
a2b2c2【例1】►设a,b,c>0,证明:a+b+c.bca
[审题视点] 用综合法证明,可考虑运用基本不等式.
证明 ∵a,b,c>0,根据均值不等式,a2b2c2有+b≥2a,c≥2b+a≥2c.bca
a2b2c2三式相加:+a+b+c≥2(a+b+c). bca
当且仅当a=b=c时取等号.
a2b2c2即+a+b+c
.bca
综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立.因此,综合法又叫做顺推证法或由因导果法.其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性.
11【训练1】 设a,b为互不相等的正数,且a+b=1,证明:>4.ab
1111ba·证明 (a+b)=2+2+2=4.ababab
11又a与b不相等.故>4.ab
考向二 分析法的应用
a+mb2≤a+mb.【例2】►已知m>0,a,b∈R,求证:1+m1+m
[审题视点] 先去分母,合并同类项,化成积式.
证明 ∵m>0,∴1+m>0.所以要证原不等式成立,只需证明(a+mb)2≤(1+m)(a2+mb2),即证m(a2-2ab+b2)≥0,即证(a-b)2≥0,而(a-b)2≥0显然成立,2
2故原不等式得证.
逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向是使问题顺利获解的关键.
【训练2】 已知a,b,m都是正数,且a<b.a+ma求证:b+mb
a+ma证明 要证明,由于a,b,m都是正数,b+mb
只需证a(b+m)<b(a+m),只需证am<bm,由于m>0,所以,只需证a<b.已知a<b,所以原不等式成立.
(说明:本题还可用作差比较法、综合法、反证法)
考向三 反证法的应用
【例3】►已知函数f(x)=ax+x-2(a>1). x+
1(1)证明:函数f(x)在(-1,+∞)上为增函数.
(2)用反证法证明f(x)=0没有负根.
[审题视点] 第(1)问用单调增函数的定义证明;第(2)问假设存在x0<0后,应推导出x0的范围与x0<0矛盾即可.
证明(1)法一 任取x1,x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,ax2-x1>1,且ax1>0.所以ax2-ax1=ax1(ax2-x1-1)>0.又因为x1+1>0,x2+1>0,所以
x2-2x1+1-x1-2x2+13x2-x1=0,x2+1x1+1x2+1x1+1
于是f(x2)-f(x1)=ax2-ax1+x2-2x1-2>0,x2+1x1+1x2-2x1-2-=x2+1x1+1
故函数f(x)在(-1,+∞)上为增函数.
法二 f′(x)=axln a+30,x+1∴f(x)在(-1,+∞)上为增函数.
x0-2x0-2(2)假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-又0<ax0<1,所以0<-x0+1x0+1
11,即<x0<2,与x0<0(x0≠-1)假设矛盾.故f(x0)=0没有负根.
当一个命题的结论是以“至多”,“至少”、“唯一”或以否定形式出现时,宜
用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛盾等方面,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.
【训练3】 已知a,b为非零向量,且a,b不平行,求证:向量a+b与a-b不平行. 证明 假设向量a+b与a-b平行,即存在实数λ使a+b=λ(a-b)成立,则(1-λ)a+(1+λ)b=0,∵a,b不平行,1-λ=0,λ=1,∴得 1+λ=0,λ=-1,
所以方程组无解,故假设不成立,故原命题成立.
规范解答24——怎样用反证法证明问题
【问题研究】 反证法是主要的间接证明方法,其基本特点是反设结论,导出矛盾,当问题从正面证明无法入手时,就可以考虑使用反证法进行证明.在高考中,对反证法的考查往往是在试题中某个重要的步骤进行.【解决方案】 首先反设,且反设必须恰当,然后再推理、得出矛盾,最后肯定.【示例】►(本题满分12分)(2011·安徽)设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0.(1)证明l1与l2相交;
(2)证明l1与l2的交点在椭圆2x2+y2=1上.
第(1)问采用反证法,第(2)问解l1与l2的交点坐标,代入椭圆方程验证.
[解答示范] 证明(1)假设l1与l2不相交,则l1与l2平行或重合,有k1=k2,(2分)
代入k1k2+2=0,得k21+2=0.(4分)
这与k1为实数的事实相矛盾,从而k1≠k2,即l1与l2相交.(6分)
y=k1x+1,(2)由方程组 y=k2x-1,
解得交点P的坐标(x,y)为k+ky=k-k.21
212x=,k2-k1(9分)
22k2+k12从而2x+y=2k-k+ 21k2-k122
2228+k22+k1+2k1k2k1+k2+4==1,k2+k1-2k1k2k1+k2+4
此即表明交点P(x,y)在椭圆2x2+y2=1上.(12分)
用反证法证明不等式要把握三点:(1)必须先否定结论,即肯定结论的反面;(2)
必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的.
【试一试】 已知数列{an}的前n项和为Sn,且满足an+Sn=2.(1)求数列{an}的通项公式;
(2)求证数列{an}中不存在三项按原来顺序成等差数列.
[尝试解答](1)当n=1时,a1+S1=2a1=2,则a1=1.1又an+Sn=2,所以an+1+Sn+1=2,两式相减得an+1=an,2
11所以{an}是首项为1,公比为an=-.22
(2)反证法:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N*),111--则,所以2·2rq=2rp+1.① 222又因为p<q<r,所以r-q,r-p∈N*.所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证.