第2章《圆锥曲线与方程-2.1 圆锥曲线》导学案

时间:2019-05-15 03:34:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第2章《圆锥曲线与方程-2.1 圆锥曲线》导学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第2章《圆锥曲线与方程-2.1 圆锥曲线》导学案》。

第一篇:第2章《圆锥曲线与方程-2.1 圆锥曲线》导学案

第2章 《圆锥曲线与方程-2.1》 导学案

教学过程

一、问题情境

2011年9月29日,中国成功发射了“天宫一号”飞行器,你知道“天宫一号”绕地球运行的轨迹是什么吗?

二、数学建构

椭圆是物体运动的一种轨迹,物体运动的轨迹有很多,常见的还有直线、圆、抛物线等.一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线;当平面与圆锥面的轴垂直时,截得的图形是一个圆.当我们改变平面的位置时,截得的图形也在发生变化.请观察图1.(图1)

对于第一种情形,可在截面的两侧分别放置一个球,使它们都与截面相切(切点分别为F1,F2),且与圆锥面相切,两球与圆锥面的公共点分别构成圆O1和圆O2(如图2).(图2)

设M是平面与圆锥面的截线上任一点,过点M作圆锥面的一条母线分别交圆O1和圆O2于P,Q两点,则MP和MF1,MQ和MF2分别是上、下两球的切线.因为过球外一点所作球的切线的长都相等,所以MF1=MP,MF2=MQ,故MF1+MF2=MP+MQ=PQ.因为PQ=VP-VQ,而VP,VQ是常数(分别为两个圆锥的母线的长),所以PQ是一个常数.也就是说,截线上任意一点到两个定点F1,F2的距离的和等于常数.通过分析,给出椭圆的概念:

F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,一般地,平面内到两个定点F1,两个定点F1,F2叫做椭圆的焦点,两个焦点的距离叫做椭圆的焦距.问题1 为什么常数要大于F1F2?

解 因为动点与F1,F2构成三角形,三角形的两边之和大于第三边,所以MF1+MF2>F1F2.问题2 若MF1+MF2=F1F2,动点M的轨迹是什么? 解 线段F1F2.问题3 若MF1+MF2F1F2,动点M的轨迹不存在.抛物线的概念: 一般地,平面内到一个定点F和到一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.说明:定点F不能在定直线l上,否则所得轨迹为过点F且与直线l垂直的一条直线.椭圆、双曲线、抛物线统称为圆锥曲线.三、数学运用

【例1】 已知定点P(0,3)和定直线l:y+3=0,动圆M过点P且与直线l相切,求证:圆心M的轨迹是一条抛物线.(见学生用书P15)[处理建议] 让学生仔细审题,作出图形,再引导学生对照抛物线的定义寻找相等关系,使问题得以解决.[规范板书] 证明 设圆M的半径为r,点M到直线l的距离为d.∵动圆M过点P且与l相切,∴MP=r,d=r,∴MP=d.而点P不在l上,∴由抛物线的定义知圆心M的轨迹是一条抛物线.(例2)[题后反思] 本题要紧扣抛物线的定义,主要注意两点:①到定点的距离等于到定直线的距离;②定点不在定直线上.【例2】(教材第27页习题2.1第3题)如图,圆F1在圆F2的内部,且点F1,F2不重合,求证:与圆F1外切且与圆F2内切的圆的圆心C的轨迹为椭圆.(见学生用书P16)[处理建议] 让学生仔细审题,明确需要解决什么问题,再引导学生根据椭圆的定义寻找“到两定点的距离之和为定值”的关系,使问题得以解决.[规范板书] 证明 设圆F1,F2的半径分别为r1,r2,动圆C的半径为t.依题意有CF1=r1+t,CF2=r2-t,消去t得CF1+CF2=r1+r2(一个大于F1F2的常数),所以动圆圆心C的轨迹是以F1,F2为焦点的椭圆.[题后反思] 要证明某点的运动轨迹,可以先考虑动点是否满足圆锥曲线的定义.本题要紧紧抓住到两定点的距离之和为定值的动点的轨迹是椭圆这一定义.变式1 如图,已知动圆C与圆F1,F2均外切(圆F1与圆F2相离),试问:动点C的轨迹是什么曲线?

(变式1)

[处理建议] 从例2的解法中联想思考,寻找动点满足的几何性质是什么.[规范板书] 解 双曲线的一支.证明如下: 设圆F1,F2的半径分别为r1,r2(r1>r2),动圆C的半径为t.依题意有CF1=r1+t,CF2=r2+t,消去t得CF1-CF2=r1-r2(一个小于F1F2的正数),所以动圆圆心C的轨迹是以F1,F2为焦点的双曲线的一支.[题后反思] 应引导学生学会利用圆锥曲线的定义直接得出轨迹.本题还有其他方式的变式:当两圆相离时,动圆与两圆均内切或与一圆内切与另一圆外切,其动圆圆心的轨迹均为双曲线的一支.2 2 2 2变式2(1)动圆与圆C1:x+y=1和C2:(x-4)+y=4都外切,则动圆圆心的轨迹是双曲线的一支.(2)动圆与圆C1:x 2+y 2=1和C2:(x-4)2+y 2=4都内切,则动圆圆心的轨迹是双曲线的一支.(3)动圆与圆C1:x 2+y 2=1内切,与圆C2:(x-4)2+y 2=4外切,则动圆圆心的轨迹是双曲线的一支.(4)动圆与圆C1:x 2+y 2=1外切,与圆C2:(x-4)2+y 2=4内切,则动圆圆心的轨迹是双曲线的一支.*

2【例3】 已知圆F的方程为(x-2)+y=1,动圆P与圆F外切且和y轴相切.求证:动圆的圆心P在一条抛物线上运动,并请写出这条抛物线的焦点坐标及准线方程.[处理建议] 因为要证明圆心P的轨迹是抛物线,所以可引导学生通过画图找到定点和定直线.[规范板书] 证明 设圆P的半径为r,它与y轴相切于T,则PF=r+1,PT=r,所以PF=PT+1,作直线l:x=-1,PT的延长线交直线l于A,则PF=PA,故点P到定点F的距离等于它到直线l的距离,所以点P在以F(2,0)为焦点,直线l:x=-1为准线的抛物线上运动.[题后反思] 三种圆锥曲线的概念都与距离有关:椭圆和双曲线的概念描述的都是点到点的距离;抛物线的概念描述的是点到点的距离,同时还有点到线的距离.圆与直线相切,能够联想到抛物线的条件.变式 点P到定点F(2,0)的距离比它到y轴的距离大1,求点P的轨迹.[处理建议] 引导学生考虑本题条件与哪种圆锥曲线的定义一致.[规范板书] 解 过点P作PT⊥y轴,垂足为T,所以PF=PT+1,作直线l:x=-1,PT的延长线交直线l于A,则PF=PA,故点P到定点F的距离等于它到直线l的距离,所以点P在以F(2,0)为焦点、直线l:x=-1为准线的抛物线上运动.[题后反思] 本题依然是属于动点到定点和到定直线的距离,但不相等的问题,关键是

[2]将不等关系转化为相等关系,可以培养学生类比推理、归纳猜想、转化等数学思维能力.四、课堂练习

1.已知双曲线的两个焦点分别为F1(-3,0)和F2(3,0),则此双曲线的焦距为 6.2.已知点A(0,-2),B(2,0),动点M满足|MA-MB|=2a(a为正常数).若点M的轨迹是以A,B为焦点的双曲线,则常数a的取值范围为(0,提示 因为AB=

2).,即0

.,由双曲线的定义知0<2a<23.若动圆M过点(3,2),且与直线3x-2y-1=0相切,则点M的轨迹是抛物线.4.已知椭圆的两个焦点分别为F1,F2,O为F1F2的中点,P为椭圆上任一动点,取线段PF1的中点Q,求证:动点Q的轨迹也是一个椭圆.证明 设PF1+PF2=m(定值),且m>F1F2,则QF1+QO=PF1+PF2=m>F1F2=F1O,所以点Q的轨迹是一个椭圆.五、课堂小结

1.圆锥曲线可通过平面截圆锥面得到.当平面经过圆锥面的顶点时,可得到两条相交直线;当平面与圆锥面的轴垂直时,截得的图形是一个圆;当平面平行于圆锥面的轴时,截得的图形是双曲线;当平面平行于圆锥面的母线时,截得的图形是抛物线;当平面既不平行、不垂直于圆锥面的轴也不平行于圆锥面的母线时,截得的图形是椭圆.2.掌握三种圆锥曲线的定义,并注意:椭圆中常数大于两个定点间距离,双曲线中常数小于两个定点间距离.3.会用圆锥曲线的定义判断动点的轨迹.

第二篇:高二数学教案:圆锥曲线方程:02

椭圆及其标准方程

一、教学目标(一)知识教学点

使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.(二)能力训练点

通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.

(三)学科渗透点

通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.

二、教材分析

1.重点:椭圆的定义和椭圆的标准方程.

(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.

(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.)3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.)

三、活动设计

提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.

四、教学过程(一)椭圆概念的引入

前面,大家学习了曲线的方程等概念,哪一位同学回答:

问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少? 对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.

提出这一问题以便说明标准方程推导中一个同解变形.

问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?

一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:

“到两定点距离之和等于常数的点的轨迹.” “到两定点距离平方差等于常数的点的轨迹.” “到两定点距离之差等于常数的点的轨迹.” 教师要加以肯定,以鼓励同学们的探索精神.

比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:

取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.

教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等„„

在此基础上,引导学生概括椭圆的定义:

平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距. 学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:

(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.

(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.

(二)椭圆标准方程的推导 1.标准方程的推导

由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.

如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.

(1)建系设点

建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.

以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).

(2)点的集合

由定义不难得出椭圆集合为: P={M||MF1|+|MF2|=2a}.(3)代数方程

(4)化简方程

化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:

①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要

(a>b>0).

关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.

示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2. 2.两种标准方程的比较(引导学生归纳)

0)、F2(c,0),这里c2=a2-b2;

-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到. 教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.

(三)例题与练习

例题

平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.

分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程. 解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.

∵2a=10,2c=8.

∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3 因此,这个椭圆的标准方程是

请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分

练习1 写出适合下列条件的椭圆的标准方程:

练习2 下列各组两个椭圆中,其焦点相同的是

[

]

由学生口答,答案为D.(四)小结

1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.

3.图形如图2-

15、2-16.

4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).

五、布置作业

1.如图2-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1|=2,A2 F1的距离最大,|A2F1|=14,求椭圆的标准方程.

3.求适合下列条件的椭圆的标准方程:

是过F1的直线被椭圆截得的线段长,求△ABF2的周长. 作业答案:

4.由椭圆定义易得,△ABF2的周长为4a.

六、板书设计

第三篇:圆锥曲线教案

与圆锥曲线有关的几种典型题

一、教学目标(一)知识教学点

使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等.

(二)能力训练点

通过对圆锥曲线有关的几种典型题的教学,培养学生综合运用圆锥曲线知识的能力.(三)学科渗透点

通过与圆锥曲线有关的几种典型题的教学,使学生掌握一些相关学科中的类似问题的处理方法.

二、教材分析

1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题.

(解决办法:先介绍基础知识,再讲解应用.)2.难点:双圆锥曲线的相交问题.

(解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.)3.疑点:与圆锥曲线有关的证明问题.

(解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.)

三、活动设计

演板、讲解、练习、分析、提问.

四、教学过程(一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”.

(二)与圆锥曲线有关的几种典型题 1.圆锥曲线的弦长求法

设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:

(2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|.

A、B两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解. 由学生演板完成.解答为:

抛物线方程为x2=-4y,∴焦点为(0,-1). 设直线l的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入x2=-4y中得:x2+4kx-4=0. ∴x1+x2=-4,x1+x2=-4k.

∴ k=±1.

∴|AB|=-(y1+y2)+p=-[(kx1-1)+(kx2-1)]+p=-k(x1+x2)+2+p.由上述解法易求得结果,由学生课外完成.

2.与圆锥曲线有关的最值(极值)的问题

在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围.

例2 已知x2+4(y-1)2=4,求:(1)x2+y2的最大值与最小值;(2)x+y的最大值与最小值. 解(1):

将x2+4(y-1)2=4代入得: x2+y2=4-4(y-1)2+y2=-3y2+8y

由点(x,y)满足x2+4(y-1)2=4知:

4(y-1)2≤4

即|y-1|≤1.

∴0≤y≤2.

当y=0时,(x2+y2)min=0. 解(2):

分析:显然采用(1)中方法行不通.如果令u=x+y,则将此代入x2+4(y-1)2=4中得关于y的一元二次方程,借助于判别式可求得最值.

令x+y=u,则有x=u-y.

代入x2+4(y-1)2=4得: 5y2-(2u+8)y+u2=0. 又∵0≤y≤2,(由(1)可知)∴[-(2u+8)]2-4×5×u2≥0.

3.与圆锥曲线有关的证明问题

它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法.

例3 在抛物线x2=4y上有两点A(x1,y1)和B(x2,y2)且满足|AB|=y1+y2+2,求证:

(1)A、B和这抛物线的焦点三点共线;

证明:

(1)∵抛物线的焦点为F(0,1),准线方程为y=-1.

∴ A、B到准线的距离分别d1=y1+1,d2=y2+1(如图2-46所示).

由抛物线的定义:

|AF|=d1=y1+1,|BF|=d2=y2+1.

∴|AF|+|BF|=y1+y2+2=|AB|. 即A、B、F三点共线.(2)如图2-46,设∠AFK=θ. ∵|AF|=|AA1|=|AK|+2 =|AF|sinθ+2,又|BF|=|BB1|=2-|BF|sinθ.

小结:与圆锥曲线有关的证明问题解决的关键是要灵活运用圆锥曲线的定义和几何性质.

4.圆锥曲线与圆锥曲线的相交问题

直线与圆锥曲线相交问题,一般可用两个方程联立后,用△≥0来处理.但用△≥0来判断双圆锥曲线相交问题是不可靠的.解决这类问题:方法1,由“△≥0”

与直观图形相结合;方法2,由“△≥0”与根与系数关系相结合;方法3,转换参数法(以后再讲).

实数a的取值范围.

可得:y2=2(1-a)y+a2-4=0. ∵ △=4(1-a)2-4(a2-4)≥0,如图2-47,可知:

(三)巩固练习(用一小黑板事先写出.)

2.已知圆(x-1)2+y2=1与抛物线y2=2px有三个公共点,求P的取值范围.

顶点.

请三个学生演板,其他同学作课堂练习,教师巡视.解答为: 1.设P的坐标为(x,y),则

2.由两曲线方程消去y得:x2-(2-2P)x=0. 解得:x1=0,x2=2-2P.

∵0<x<2,∴0<2-2P<2,即0<P<1. 故P的取值范围为(0,1).

四个交点为A(4,1),B(4,-1),C(-4,-1),D(-4,1). 所以A、B、C、D是矩形的四个顶点.

五、布置作业

1.一条定抛物线C1∶y2=1-x与动圆C2∶(x-a)2+y2=1没有公共点,求a的范围.

2.求抛线y=x2上到直线y=2x-4的距离为最小的点P的坐标. 3.证明:从双曲线的一个焦点到一条渐近线的距离等于虚半轴长. 作业答案:

1.当x≤1时,由C1、C2的方程中消去y,得x2-(2a+1)x+a2=0,离为d,则

似证明.

六、板书设计

第四篇:人教版高中数学《圆锥曲线和方程》全部教案

人教版高中数学全部教案

椭圆及其标准方程

一、教学目标(一)知识教学点

使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.(二)能力训练点

通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.

(三)学科渗透点

通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.

二、教材分析

1.重点:椭圆的定义和椭圆的标准方程.

(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.

(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.)3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.)

三、活动设计

提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.

四、教学过程(一)椭圆概念的引入

前面,大家学习了曲线的方程等概念,哪一位同学回答:

问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?

人教版高中数学全部教案

对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.

提出这一问题以便说明标准方程推导中一个同解变形.

问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?

一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:

“到两定点距离之和等于常数的点的轨迹.” “到两定点距离平方差等于常数的点的轨迹.” “到两定点距离之差等于常数的点的轨迹.” 教师要加以肯定,以鼓励同学们的探索精神.

比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:

取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.

教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等„„

在此基础上,引导学生概括椭圆的定义:

平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.

人教版高中数学全部教案

学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:

(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.

(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.

(二)椭圆标准方程的推导 1.标准方程的推导

由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.

如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.

(1)建系设点

建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.

以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).

(2)点的集合

由定义不难得出椭圆集合为: P={M||MF1|+|MF2|=2a}.

人教版高中数学全部教案

(3)代数方程

(4)化简方程

化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:

①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要

(a>b>0).

关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.

示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2. 2.两种标准方程的比较(引导学生归纳)

0)、F2(c,0),这里c2=a2-b2;

-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.

人教版高中数学全部教案

教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.

(三)例题与练习

例题

平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.

分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程. 解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.

∵2a=10,2c=8.

∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3 因此,这个椭圆的标准方程是

请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分

练习1 写出适合下列条件的椭圆的标准方程:

练习2 下列各组两个椭圆中,其焦点相同的是

[

]

人教版高中数学全部教案

由学生口答,答案为D.(四)小结

1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.

3.图形如图2-

15、2-16.

4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).

五、布置作业

1.如图2-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1|=2,A2 F1的距离最大,|A2F1|=14,求椭圆的标准方程.

人教版高中数学全部教案

3.求适合下列条件的椭圆的标准方程:

是过F1的直线被椭圆截得的线段长,求△ABF2的周长. 作业答案:

4.由椭圆定义易得,△ABF2的周长为4a.

六、板书设计

人教版高中数学全部教案

椭圆及其标准方程

一、教学目标(一)知识教学点

使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.(二)能力训练点

通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.

(三)学科渗透点

通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.

二、教材分析

1.重点:椭圆的定义和椭圆的标准方程.

(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.

(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.)

人教版高中数学全部教案

3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.)

三、活动设计

提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.

四、教学过程(一)椭圆概念的引入

前面,大家学习了曲线的方程等概念,哪一位同学回答:

问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?

对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.

提出这一问题以便说明标准方程推导中一个同解变形.

问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?

一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:

“到两定点距离之和等于常数的点的轨迹.” “到两定点距离平方差等于常数的点的轨迹.” “到两定点距离之差等于常数的点的轨迹.” 教师要加以肯定,以鼓励同学们的探索精神.

比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:

人教版高中数学全部教案

取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.

教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等„„

在此基础上,引导学生概括椭圆的定义:

平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.

学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:

(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.

(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.

(二)椭圆标准方程的推导 1.标准方程的推导

由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.

如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.

(1)建系设点

建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.

人教版高中数学全部教案

以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).

(2)点的集合

由定义不难得出椭圆集合为: P={M||MF1|+|MF2|=2a}.(3)代数方程

(4)化简方程

化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:

①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要

(a>b>0).

关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.

人教版高中数学全部教案

示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2. 2.两种标准方程的比较(引导学生归纳)

0)、F2(c,0),这里c2=a2-b2;

-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到. 教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.

(三)例题与练习

例题

平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.

分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程. 解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.

∵2a=10,2c=8.

∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3 因此,这个椭圆的标准方程是

请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分

人教版高中数学全部教案

练习1 写出适合下列条件的椭圆的标准方程:

练习2 下列各组两个椭圆中,其焦点相同的是

[

]

由学生口答,答案为D.(四)小结

1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.

3.图形如图2-

15、2-16.

人教版高中数学全部教案

4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).

五、布置作业

1.如图2-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1|=2,A2 F1的距离最大,|A2F1|=14,求椭圆的标准方程.

3.求适合下列条件的椭圆的标准方程:

人教版高中数学全部教案

是过F1的直线被椭圆截得的线段长,求△ABF2的周长. 作业答案:

4.由椭圆定义易得,△ABF2的周长为4a.

六、板书设计

椭圆的几何性质

一、教学目标(一)知识教学点

人教版高中数学全部教案

通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.

(二)能力训练点

通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点

使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.

二、教材分析

1.重点:椭圆的几何性质及初步运用.

(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.)2.难点:椭圆离心率的概念的理解.

(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.

(解决办法:利用方程分析椭圆性质之前就先给学生说明.)

三、活动设计

提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.

四、教学过程(一)复习提问

1.椭圆的定义是什么? 2.椭圆的标准方程是什么? 学生口述,教师板书.(二)几何性质

根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是

人教版高中数学全部教案

b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.

1.范围

即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.

2.对称性

先请大家阅读课本椭圆的几何性质2.

设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的” 呢?

事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.

同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.

事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称.

最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心. 3.顶点

人教版高中数学全部教案

只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).

教师还需指出:

(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;

(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;

这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.

4.离心率

教师直接给出椭圆的离心率的定义:

等到介绍椭圆的第二定义时,再讲清离心率e的几何意义. 先分析椭圆的离心率e的取值范围: ∵a>c>0,∴ 0<e<1.

再结合图形分析离心率的大小对椭圆形状的影响:

(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.

(三)应用

为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.

人教版高中数学全部教案

例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.

本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:

(2)描点作图.先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19).要强调:利用对称性可以使计算量大大减少.

本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:

设d是点M到直线l的距离,根据题意,所求轨迹就是集合P={M

人教版高中数学全部教案

将上式化简,得:(a2-c2)x2+a2y2=a2(a2-c2).

这是椭圆的标准方程,所以点M的轨迹是椭圆. 由此例不难归纳出椭圆的第二定义.(四)椭圆的第二定义 1.定义

平面内点M与一个定点的距离和它到一定直线的距离的比是常数

线叫做椭圆的准线,常数e是椭圆的离心率. 2.说明

这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比.

(五)小结

人教版高中数学全部教案

解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:

五、布置作业

1.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:

(1)25x2+4y2-100=0,(2)x2+4y2-1=0.

2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.

3.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形. 的方程. 作业答案:

人教版高中数学全部教案

4.顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:

六、板书设计

椭圆的几何性质

人教版高中数学全部教案

一、教学目标(一)知识教学点

通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.

(二)能力训练点

通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点

使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.

二、教材分析

1.重点:椭圆的几何性质及初步运用.

(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.)2.难点:椭圆离心率的概念的理解.

(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.

(解决办法:利用方程分析椭圆性质之前就先给学生说明.)

三、活动设计

提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.

四、教学过程(一)复习提问

1.椭圆的定义是什么? 2.椭圆的标准方程是什么?

人教版高中数学全部教案

学生口述,教师板书.(二)几何性质

根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是

b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.

1.范围

即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.

2.对称性

先请大家阅读课本椭圆的几何性质2.

设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的” 呢?

事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.

同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.

人教版高中数学全部教案

事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称.

最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心. 3.顶点

只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).

教师还需指出:

(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;

(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;

这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.

4.离心率

教师直接给出椭圆的离心率的定义:

等到介绍椭圆的第二定义时,再讲清离心率e的几何意义. 先分析椭圆的离心率e的取值范围: ∵a>c>0,∴ 0<e<1.

再结合图形分析离心率的大小对椭圆形状的影响:

(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;

人教版高中数学全部教案

(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.

(三)应用

为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1. 例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.

本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:

(2)描点作图.先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19).要强调:利用对称性可以使计算量大大减少.

本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:

设d是点M到直线l的距离,根据题意,所求轨迹就是集合P={M

人教版高中数学全部教案

将上式化简,得:(a2-c2)x2+a2y2=a2(a2-c2).

这是椭圆的标准方程,所以点M的轨迹是椭圆. 由此例不难归纳出椭圆的第二定义.(四)椭圆的第二定义 1.定义

平面内点M与一个定点的距离和它到一定直线的距离的比是常数

线叫做椭圆的准线,常数e是椭圆的离心率. 2.说明

人教版高中数学全部教案

这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比.

(五)小结

解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:

五、布置作业

1.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:

(1)25x2+4y2-100=0,(2)x2+4y2-1=0.

2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.

3.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形. 的方程.

人教版高中数学全部教案

作业答案:

4.顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:

六、板书设计

人教版高中数学全部教案

双曲线及其标准方程

一、教学目标(一)知识教学点

使学生掌握双曲线的定义和标准方程,以及标准方程的推导.(二)能力训练点

在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力.(三)学科渗透点

本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识.

二、教材分析

1.重点:双曲线的定义和双曲线的标准方程.

(解决办法:通过一个简单实验得出双曲线,再通过设问给出双曲线的定义;对于双曲线的标准方程通过比较加深认识.)2.难点:双曲线的标准方程的推导.

(解决办法:引导学生完成,提醒学生与椭圆标准方程的推导类比.)3.疑点:双曲线的方程是二次函数关系吗?

(解决办法:教师可以从引导学生回忆函数定义和观察双曲线图形来解决,同时让学生在课外去研究在什么附加条件下,双曲线方程可以转化为函数式.)

三、活动设计

提问、实验、设问、归纳定义、讲解、演板、口答、重点讲解、小结.

四、教学过程(一)复习提问

1.椭圆的定义是什么?(学生回答,教师板书)

人教版高中数学全部教案

平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.教师要强调条件:(1)平面内;(2)到两定点F1、F2的距离的和等于常数;(3)常数2a>|F1F2|.

2.椭圆的标准方程是什么?(学生口答,教师板书)

(二)双曲线的概念

把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?它的方程是怎样的呢?

1.简单实验(边演示、边说明)如图2-23,定点F1、F2是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出曲线的一支;由|MF2|-|MF1|是同一常数,可以画出另一支.

注意:常数要小于|F1F2|,否则作不出图形.这样作出的曲线就叫做双曲线. 2.设问

问题1:定点F1、F2与动点M不在平面上,能否得到双曲线? 请学生回答,不能.强调“在平面内”. 问题2:|MF1|与|MF2|哪个大?

请学生回答,不定:当M在双曲线右支上时,|MF1|>|MF2|;当点M在双曲线左支上时,|MF1|<|MF2|.

问题3:点M与定点F1、F2距离的差是否就是|MF1|-|MF2|?

请学生回答,不一定,也可以是|MF2|-|MF1|.正确表示为||MF2|-|MF1||.

人教版高中数学全部教案

问题4:这个常数是否会大于等于|F1F2|?

请学生回答,应小于|F1F2|且大于零.当常数=|F1F2|时,轨迹是以F1、F2为端点的两条射线;当常数>|F1F2|时,无轨迹.

3.定义

在上述基础上,引导学生概括双曲线的定义:

平面内与两定点F1、F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点F1、F2叫做双曲线的焦点,两个焦点之间的距离叫做焦距.

教师指出:双曲线的定义可以与椭圆相对照来记忆,不要死记.(三)双曲线的标准方程

现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导学生给出双曲线的方程的推导.

标准方程的推导:(1)建系设点

取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴(如图2-24)

建立直角坐标系.

设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0).又设点M与F1、F2的距离的差的绝对值等于常数.

(2)点的集合

由定义可知,双曲线就是集合:

人教版高中数学全部教案

P={M||MF1|-|MF2||=2a}={M|MF1|-|MF2|=±2a}.(3)代数方程

(4)化简方程(由学生演板)将这个方程移项,两边平方得:

化简得:

两边再平方,整理得:(c2-a2)x2-a2y2=a2(c2-a2).

(以上推导完全可以仿照椭圆方程的推导.)由双曲线定义,2c>2a 即c>a,所以c2-a2>0. 设c2-a2=b2(b>0),代入上式得: b2x2-a2y2=a2b2.

这就是双曲线的标准方程.

两种标准方程的比较(引导学生归纳):

人教版高中数学全部教案

教师指出:

(1)双曲线标准方程中,a>0,b>0,但a不一定大于b;

(2)如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上.注意有别于椭圆通过比较分母的大小来判定焦点在哪一坐标轴上.

(3)双曲线标准方程中a、b、c的关系是c2=a2+b2,不同于椭圆方程中c2=a2-b2.(四)练习与例题

1.求满足下列的双曲线的标准方程: 焦点F1(-3,0)、F2(3,0),且2a=4;

3.已知两点F1(-5,0)、F2(5,0),求与它们的距离的差的绝对值是6的点的轨迹方程.如果把这里的数字6改为12,其他条件不变,会出现什么情况?

由教师讲解:

按定义,所求点的轨迹是双曲线,因为c=5,a=3,所以b2=c2-a2=52-32=42.

人教版高中数学全部教案

因为2a=12,2c=10,且2a>2c. 所以动点无轨迹.(五)小结

1.定义:平面内与两定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.

3.图形(见图2-25):

4.焦点:F1(-c,0)、F2(c,0);F1(0,-c)、F2(0,c). 5.a、b、c的关系:c2=a2+b2;c=a2+b2.

五、布置作业

1.根据下列条件,求双曲线的标准方程:

(1)焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2);

3.已知圆锥曲线的方程为mx2+ny2=m+n(m<0<m+n),求其焦点坐标. 作业答案:

人教版高中数学全部教案

2.由(1+k)(1-k)<0解得:k<-1或k>1

六、板书设计

人教版高中数学全部教案

双曲线及其标准方程

一、教学目标(一)知识教学点

使学生掌握双曲线的定义和标准方程,以及标准方程的推导.(二)能力训练点

在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力.(三)学科渗透点

本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识.

二、教材分析

1.重点:双曲线的定义和双曲线的标准方程.

(解决办法:通过一个简单实验得出双曲线,再通过设问给出双曲线的定义;对于双曲线的标准方程通过比较加深认识.)2.难点:双曲线的标准方程的推导.

(解决办法:引导学生完成,提醒学生与椭圆标准方程的推导类比.)3.疑点:双曲线的方程是二次函数关系吗?

人教版高中数学全部教案

(解决办法:教师可以从引导学生回忆函数定义和观察双曲线图形来解决,同时让学生在课外去研究在什么附加条件下,双曲线方程可以转化为函数式.)

三、活动设计

提问、实验、设问、归纳定义、讲解、演板、口答、重点讲解、小结.

四、教学过程(一)复习提问

1.椭圆的定义是什么?(学生回答,教师板书)平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.教师要强调条件:(1)平面内;(2)到两定点F1、F2的距离的和等于常数;(3)常数2a>|F1F2|.

2.椭圆的标准方程是什么?(学生口答,教师板书)

(二)双曲线的概念

把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?它的方程是怎样的呢?

1.简单实验(边演示、边说明)如图2-23,定点F1、F2是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出曲线的一支;由|MF2|-|MF1|是同一常数,可以画出另一支.

注意:常数要小于|F1F2|,否则作不出图形.这样作出的曲线就叫做双曲线. 2.设问

人教版高中数学全部教案

问题1:定点F1、F2与动点M不在平面上,能否得到双曲线? 请学生回答,不能.强调“在平面内”. 问题2:|MF1|与|MF2|哪个大?

请学生回答,不定:当M在双曲线右支上时,|MF1|>|MF2|;当点M在双曲线左支上时,|MF1|<|MF2|.

问题3:点M与定点F1、F2距离的差是否就是|MF1|-|MF2|?

请学生回答,不一定,也可以是|MF2|-|MF1|.正确表示为||MF2|-|MF1||. 问题4:这个常数是否会大于等于|F1F2|?

请学生回答,应小于|F1F2|且大于零.当常数=|F1F2|时,轨迹是以F1、F2为端点的两条射线;当常数>|F1F2|时,无轨迹.

3.定义

在上述基础上,引导学生概括双曲线的定义:

平面内与两定点F1、F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点F1、F2叫做双曲线的焦点,两个焦点之间的距离叫做焦距.

教师指出:双曲线的定义可以与椭圆相对照来记忆,不要死记.(三)双曲线的标准方程

现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导学生给出双曲线的方程的推导.

标准方程的推导:(1)建系设点

取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴(如图2-24)

人教版高中数学全部教案

建立直角坐标系.

设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0).又设点M与F1、F2的距离的差的绝对值等于常数.

(2)点的集合

由定义可知,双曲线就是集合:

P={M||MF1|-|MF2||=2a}={M|MF1|-|MF2|=±2a}.(3)代数方程

(4)化简方程(由学生演板)将这个方程移项,两边平方得:

化简得:

两边再平方,整理得:

人教版高中数学全部教案

(c2-a2)x2-a2y2=a2(c2-a2).

(以上推导完全可以仿照椭圆方程的推导.)由双曲线定义,2c>2a 即c>a,所以c2-a2>0. 设c2-a2=b2(b>0),代入上式得: b2x2-a2y2=a2b2.

这就是双曲线的标准方程.

两种标准方程的比较(引导学生归纳):

教师指出:

(1)双曲线标准方程中,a>0,b>0,但a不一定大于b;

(2)如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上.注意有别于椭圆通过比较分母的大小来判定焦点在哪一坐标轴上.

(3)双曲线标准方程中a、b、c的关系是c2=a2+b2,不同于椭圆方程中c2=a2-b2.(四)练习与例题

1.求满足下列的双曲线的标准方程: 焦点F1(-3,0)、F2(3,0),且2a=4;

人教版高中数学全部教案

3.已知两点F1(-5,0)、F2(5,0),求与它们的距离的差的绝对值是6的点的轨迹方程.如果把这里的数字6改为12,其他条件不变,会出现什么情况?

由教师讲解:

按定义,所求点的轨迹是双曲线,因为c=5,a=3,所以b2=c2-a2=52-32=42.

因为2a=12,2c=10,且2a>2c. 所以动点无轨迹.(五)小结

1.定义:平面内与两定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.

3.图形(见图2-25):

人教版高中数学全部教案

4.焦点:F1(-c,0)、F2(c,0);F1(0,-c)、F2(0,c). 5.a、b、c的关系:c2=a2+b2;c=a2+b2.

五、布置作业

1.根据下列条件,求双曲线的标准方程:

(1)焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2);

3.已知圆锥曲线的方程为mx2+ny2=m+n(m<0<m+n),求其焦点坐标. 作业答案:

2.由(1+k)(1-k)<0解得:k<-1或k>1

人教版高中数学全部教案

六、板书设计

双曲线的几何性质

一、教学目标(一)知识教学点

使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.

(二)能力训练点

在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点

使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题.

人教版高中数学全部教案

二、教材分析

1.重点:双曲线的几何性质及初步运用.

(解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.)2.难点:双曲线的渐近线方程的导出和论证.

(解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.)3.疑点:双曲线的渐近线的证明.(解决办法:通过详细讲解.)

三、活动设计

提问、类比、重点讲解、演板、讲解并归纳、小结.

四、教学过程

(一)复习提问引入新课

1.椭圆有哪些几何性质,是如何探讨的?

请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的. 2.双曲线的两种标准方程是什么?

再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标

下面我们类比椭圆的几何性质来研究它的几何性质.(二)类比联想得出性质(性质1~3)引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页>(三)问题之中导出渐近线(性质4)

人教版高中数学全部教案

在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计

仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想.

接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?

下面,我们来证明它:

双曲线在第一象限的部分可写成:

人教版高中数学全部教案

当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.

在其他象限内也可以证明类似的情况.

现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字

人教版高中数学全部教案

母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字

这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精

再描几个点,就可以随后画出比较精确的双曲线.(四)顺其自然介绍离心率(性质5)由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:

变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.

这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.

(五)练习与例题

1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.

人教版高中数学全部教案

请一学生演板,其他同学练习,教师巡视,练习毕予以订正.

由此可知,实半轴长a=4,虚半轴长b=3.

焦点坐标是(0,-5),(0,5).

本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结.

解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:

人教版高中数学全部教案

化简得:(c2-a2)x2-a2y2=a2(c2-a2).

这就是双曲线的标准方程.

由此例不难归纳出双曲线的第二定义.(六)双曲线的第二定义 1.定义(由学生归纳给出)平面内点M与一定点的距离和它到一条直线的距离的比是常数e=

叫做双曲线的准线,常数e是双曲线的离心率. 2.说明

(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结.

五、布置作业

1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)16x2-9y2=144;(2)16x2-9y2=-144.

第五篇:圆锥曲线统一的极坐标方程及应用

圆锥曲线统一的极坐标方程及应用

以圆锥曲线的焦点(椭圆的左焦点、双曲线的右焦点、抛物线的焦点)为极点,过极点引相应准线的垂线的反向延长线为极轴,则圆锥曲线的统一极坐标方程为ep,其中e为离心率,p是焦点到相应准线的距离。1ecos

1、过双曲线x2y24的右焦点F作倾斜角为105的直线交双曲线于P,Q两点,则|FP||FQ|的值为例

2、抛物线y24x的焦点为F,准线为l,经过F且斜率为3的直线与抛物线在x轴上

方的部分交于点A,AKl,垂足为K,则AKF的面积是()

A.4B.3C.43D.8

3、中心在原点O的椭圆右焦点为F(3,0),右准线l的方程为x12.(1)求椭圆的方程;

(2)在椭圆上任取三个不同的点P1、P2、P3,使P1FP2P2FP3P3FP1,证明:

111为定值,并求出此定值。|FP1||FP2||FP3|

下载第2章《圆锥曲线与方程-2.1 圆锥曲线》导学案word格式文档
下载第2章《圆锥曲线与方程-2.1 圆锥曲线》导学案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    4.4.9圆锥曲线的参数方程 教案范文

    第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察......

    直线与圆锥曲线练习2

    直线与圆锥曲线练习 一、选择题 1.过点P(0,2)与抛物线y2=2x只有一个公共点的直线有. A.0条B.1条C.2条D.3条 xy2.已知点F1,F2-1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的ab直线与双曲线......

    圆锥曲线教案 抛物线的定义及其标准方程教案

    圆锥曲线教案 抛物线的定义及其标准方程教案 教学目标 1.使学生理解抛物线的定义、标准方程及其推导过程,并能初步利用它们解决有关问题. 2.通过教学,培养学生观察、联想、类比、......

    高中数学 第2章 圆锥曲线与方程 1 圆锥曲线教学案(无答案)苏教版选修2-1

    圆锥曲线 [目地要求] 1、 了解圆锥面的概念 2、 了解用平面从不同角度截圆锥面所得到的曲线 3、 理解椭圆、双曲线、抛物线的定义 [重点难点] 重点:椭圆、双曲线、抛物线的定......

    2018年高考冲刺圆锥曲线

    2018年高考冲刺圆锥曲线 一.选择题(共13小题) 1.已知圆C:(x﹣1)2+(y﹣4)2=10和点M(5,t),若圆C上存在两点A,B,使得MA⊥MB,则实数t的取值范围为 A.[﹣2,6] B.[﹣3,5] C.[2,6] D.[3,5] 2.已知圆x2+y2=1,点A(1,0),△ABC......

    《圆锥曲线》网络教学设计

    《圆锥曲线》网络教学设计 一、学习目标与任务 、学习目标描述 知识目标 理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。 了解圆锥曲线与现实......

    圆锥曲线教案 对称问题教案

    圆锥曲线教案 对称问题教案 教学目标 1.引导学生探索并掌握解决中心对称及轴对称问题的解析方法. 2.通过对称问题的研究求解,进一步理解数形结合的思想方法,提高分析问题和解决问......

    数学直线与圆锥曲线教学反思

    数学直线与圆锥曲线教学反思本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,这为本节复习课起着铺垫作......