立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质

时间:2019-05-12 17:22:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质》。

第一篇:立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质

立体几何(线面平行、垂直的有关结论)

空间中线面平行、垂直关系有关的定理:

1、【线面平行的判定】平面外的一条直线和平面内的一条直线平行,则这条直线和这个平面平行。

2、【线面平行的性质】如果一条直线和一个平面平行,经过这条直线的平面和这平面相交,那么这条直线就和两平面的交线平行。

3、如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。

4、如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。

5、如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

6、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

7、一条直线与两条平行直线中的一条直线相垂直,则这条直线也与另一条直线垂直。

8、与同一条直线都垂直的两条直线相互平行。()

9、与同一个平面都垂直的两条直线相互平行。

10、两条平行直线中的一条直线与一个平面相垂直,则另一条直线也垂直于这个平面。

11、两条相互垂直的直线中的一条平行于一个平面,则另一条直线垂直于这个平面。()

12、两条相互垂直的直线中的一条垂直于以个平面,则另一条直线平行于这个平面。()

13、平面外的两条相互垂直的直线中的一条垂直于一个平面,则另一条直线平行于这个平面。

14、一条直线垂直于两个平行平面中的一个平面,那么该直线也垂直于另一个平面。

15、如果两个平面垂直于同一条直线,那么这两个平面平行。

16、两个平面都与另一个平面相垂直,则这两个平面平行。()

17、一个平面垂直于两平行平面中的一个平面,则此平面也垂直于另一个平面。

18、如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直。

19、如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线。

20、如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直。

21、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

【知识归纳】: 【典型例题】: 【高考小题】:

第二篇:立体几何中线面平行垂直性质判定2012

2012考前集训高频考点立体几何考纲解读

必须掌握空间中线面平行、垂直的有关性质与判定定理

判定定理

1.如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a,b,a//b,则a//.2.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b,abp,a//,b//,则//.3.如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.即若m,n,mnB,lm,ln,则l.4.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l,l,则.性质定理

1.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a//,a,b,则a//b.2.两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ=a,β∩γ=b,则a//b

3.垂直于同一平面的两直线平行,即若a,b,则a//b

4.如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若,a,l,la,则l.必须掌握常见几何体的表面积及体积公式:

V柱体Sh(S为底面积,h为柱体高)

V锥体V台体

V球体1Sh(S为底面积,h为柱体高)31(S'S'SS)h(S',S分别为上,下底面积,h为台体高)34R3(R为球体半径)

31.在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=90,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.若M是线段AD的中点,求证:GM∥平面ABFE;

【解析】连结AF,因为EF∥AB,FG∥BC,EF∩FG=F,所以平面EFG∥平面ABCD,又易证

EFG∽ABC, 所以

FGEF111,即FGBC,即FGAD,又M为

AD BCAB222-1-的中点,所以AM1AD,又因为FG∥BC∥AD,所以FG∥AM,所以四边形AMGF是平行四边形,故

2GM∥FA,又因为GM平面ABFE,FA平面ABFE,所以GM∥平面ABFE.2.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于D.求证:PB1∥平面BDA1;

本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决问题的能力.

解:连结AB1与BA1交于点O,连结OD,∵C1D∥平面AA1,A1C1∥AP,∴AD=PD,又AO=B1O,∴OD∥PB1,又OD面BDA1,PB1面BDA1,∴PB1∥平面BDA1.

3.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB。

(Ⅰ)求证:CE⊥平面PAD;

(Ⅱ)若PA=AB=1,AD=3,CD2,∠CDA=45°,求四棱锥P-ABCD的体积

D

C

分析:本小题主要考查直线与直线、直线与平面的位置关系,几何体的体积等基础知识;考查空间想象能

力,推理论证能力,运算求解能力;考查数形结合思想,化归与转化思想,满分12分

(I)证明:因为PA平面ABCD,CE平面ABCD,所以PACE.,因为ABAD,CE//AB,所以CEAD.又PAADA,所以CE平面PAD。

(II)由(I)可知CEAD,在RtECD中,DE=CDcos451,CECDsin451,又因为ABCE1,AB//CE,所以四边形ABCE为矩形,所以S四边形ABCDS矩形ADCESECDABAE

又PA平面ABCD,PA=1,所以V四边形PABCDP115CEDE1211.2221155S四边形ABCDPA1.3326

4.如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:(1)直线EF//平面PCD;

(2)平面BEF⊥平面

PAD.-2-

(第16题图)

答案:(1)因为E、F分别是AP、AD的中点,EFPD,又PD面PCD,EF面PCD

直线EF//平面PCD

(2)连接BDAB=AD,BAD=60,ABD为正三角形

F是AD的中点,BFAD,又平面PAD⊥平面ABCD,面PAD面ABCD=AD,BF面PAD,BF面BEF

所以,平面BEF⊥平面PAD.5.如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=1PD. 2

(I)证明:PQ⊥平面DCQ;

(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.

解:(I)由条件知PDAQ为直角梯形

因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.又四边形ABCD为正方形,DC⊥AD,所以DC⊥平面PDAQ,可得PQ

⊥DC.在直角梯形PDAQ中可得,则PQ⊥QD 所以PQ⊥平面DCQ.………………6分

(II)设AB=a.由题设知AQ为棱锥Q—ABCD的高,所以棱锥Q—ABCD的体积V1

由(I)知PQ为棱锥P—DCQ的高,而,△DCQ的面积为

所以棱锥P—DCQ的体积为V213a.32,213a.3

故棱锥Q—ABCD的体积与棱锥P—DCQ的体积的比值为1.…………12分

ABCD,底面ABCD是平行四边形,6.山东文如图,在四棱台ABCDA1B1C1D1中,D1D平面

AB=2AD,AD=A1B1,BAD=60°

(Ⅰ)证明:AA1BD;

(Ⅱ)证明:CC1∥平面A1BD.

(I)证法一:

因为D1D平面ABCD,且BD平面ABCD,所以D1DBD,又因为AB=2AD,BAD60,在ABD中,由余弦定理得

BD2AD2AB22ADABcos603AD2,所以AD2BD2AB2,因此ADBD,又ADD1DD,所以BD平面ADD1A1平面ADD1A1,故AA1BD.1.又AA

证法二:

因为D1D平面ABCD,且BD平面ABCD,所以BDD1D.,取AB的中点G,连接DG,在ABD中,由AB=2AD得AG=AD,又BAD60,所以ADG为等边三角形。

因此GD=GB,故DBGGDB,又AGD60,所以GDB=30,故ADB=ADG+GDB=60+30=90,所以BDAD.又ADD1DD,所以BD平面ADD1A1,又AA1平面ADD1A1,故AA1BD.(II)连接AC,A1C1,设ACBDE,连接EA1

因为四边形ABCD为平行四边形,所以EC1AC.2

由棱台定义及AB=2AD=2A1B1知A1C1//EC且A1C1=EC,所以边四形A1ECC1为平行四边形,因此CC1//EA1,又因为EA1平面A1BD,CC1平面A1BD,所以CC1//平面A1BD。

7.如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90,(1)证明:平面ADB⊥平面BDC;

(2)设BD=1,求三棱锥D—ABC的表面积。

【分析】(1)确定图形在折起前后的不变性质,如角的大小不变,线段长度不变,线线关系不变,再由面面垂直的判定定理进行推理证明;(2)充分利用垂直所得的直角三角形,根据直角三角形的面积公式计算.

【解】(1)∵折起前AD是BC边上的高,∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,又DBDC=D,∴AD⊥平面BDC,又∵AD

∴平面ABD⊥平面BDC.

(2)由(1)知,DADB,DBDC,DCDA,DB=DA=DC=1,平面BDC.

111SDAMS

DBCSDCA11,S

ABCsin60 2222

13S3 ∴三棱锥D

—ABC的表面积是222

8.在四面体ABCD中,平面ABC平面ACD,ABBC,ADCD,CAD。若AD,ABBC,求四面体ABCD的体积;

解:如答(19)图1,设F为AC的中点,由于AD=CD,所以

DF⊥AC.故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30°=1,AF=ADcos30°

在Rt△ABC中,因

AC=2AF=

AB=2BC,由勾股定理易知

BC; AB故四面体ABCD的体积

1114VSABCDF.3325

9.如图,在四面体的体积;中,平面平面,,.求四面体

解法一:如答(20)图1,过D作DF⊥AC垂足为F,故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF

是四面体ABCD的面ABC上的高,设G为边CD的中点,则由AC=AD,知AG⊥CD,从而

AG2A

C

B11AGCD由ACDFCDAG得DF22AC由

RtABC中,ABSABC1ABBC 2故四面体ABCD的体积V

1SABCDF

38-5-

第三篇:线线平行垂直,线面平行垂直,面面平行垂直判定与性质

1.线线平行

判定:a用向量,方向向量平行b一条直线平行于另一个平面,则它平行于它所在平面与那个平面的交线。C若一平面与两平行平面相交,则两交线平行。D同时与一平面垂直的两直线平行。E同时平行于一条直线的两直线平行。

性质:貌似没啥性质,一般是证明线面关系的时候先证明线线关系。

2.线线垂直

判定:a向量,方向向量垂直b直线垂直于平面,则直线与平面中的任意直线都垂直c第一条直线与第二条直线平行,第一条垂直于第三条,则第二条也垂直于第三条d把两直线放在一个平面中,利用平面几何各种判定方法,如等腰三角形的底和高等。E(重点)三垂线定理:平面内的一条直线,如果和过平面的一条斜线在平面内的射影垂直,那么它就和这条斜线垂直。三垂线逆定理:在平面内的一条直线,如果和过平面的一条斜线垂直,那么它也垂直于斜线在平面内的射影。(这个比较重要,记不住的话找一下例题,多看看图就好了)性质:貌似也没什么性质,一般也是要证明线面关系的时候用到它。注意:第一条直线垂直于第二条直线,第一条直线垂直于第三条直线,则第二条直线与第三条直线可垂直可平行也可普通相交。

3,线面平行

判定:a面外一条线与面内一条线平行。(常用)b空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)(常用)c面外一直线上不同两点到面的距离相等d证明线面无交点(定义)e反证法(线与面相交,再推翻)

性质:平面外一条直线与此平面平行,则过这条直线的任意平面与此平面的交线与该直线平行。

4.线面垂直

判定:a一条线和平面内两条相交直线都垂直,那么这条直线和这个平面垂直b两个平面垂直,其中一个平面内的直线垂直两平面的交线,那么这条直线和这个平面垂直c直线的方向向量与平面的法向量平行

性质:如果两条直线同时垂直一个平面,那么这两条直线平行。

5.面面平行

判定a一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行。(常用)b如果两平面同时垂直于一条直线,则两平面平行(大题一般不用)

性质:a两个平面平行,在一个平面内的任意一条直线平行于另外一个平面b两个平面平行,和一个平面垂直的直线必垂直于另外一个平面c两个平行平面,分别和第三个平面相交,交线平行d平行平面所截的线段对应成比例(这个是推论,不好描述,书上或练习册上应该有类似的题)

6.面面垂直

判定:一个面如果过另外一个面的垂线,那么这两个面相互垂直

性质:a如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。b如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内。C如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。D三个两两垂直的平面的交线两两垂直。

第四篇:2013届高三数学专题——立体几何(二)线面平行与垂直

2013届高三数学专题——立体几何

(二)线面平行与垂直

一、定理内容(数学语言)

(1)证明线面平行

(2)证明面面平行

(3)证明线面垂直

(4)证明面面垂直

二、定理内容(文字语言与数学图形)

(1)证明线面平行:

(2)证明面面平行:

(3)证明线面垂直:

(4)证明面面垂直:

三、典型例题

1.如图,在四棱锥PABCD中,底面ABCD是正方形,PD底面ABCD,M、N 分别为PA、BC的中点,且PDAD.(Ⅰ)求证:MN∥平面PCD;(Ⅱ)求证:AC⊥平面PBD.

M

N

A

B

C

2.在三棱锥PABC中,侧棱PA底面ABC,ABBC,E、F分别是棱BC、PC 的中点.

(Ⅰ)证明:EF∥平面PAB;(Ⅱ)证明:EFBC.

3.在直三棱柱ABCA1B1C1中,AA1AC.

F

P

A

E

B

C

BC1;(Ⅰ)若ABAC,求证:AC

1BC1,求证:ABAC.(Ⅱ)若AC1

B

4.在三棱锥PABC中,平面PAB平面ABC,ABBC,APPB,求证:平面PAC平面PBC.

C

B

5.如图所示,在直三棱柱ABCA1B1C1中,ABBB1,AC1平面A1BD,D为AC的中点.

(Ⅰ)求证:B1C//平面A1BD;(Ⅱ)求证:B1C1平面ABB1A1;

(Ⅲ)设E是CC1上一点,试确定E的位置使

平面A1BD平面BDE,并说明理由.

D

A

C

AB1

C1

6.三棱柱ABCA1B1C1中,侧棱与底面垂直,ABC90,ABBCBB12,M,N分别是AB,AC1的中点.

(Ⅰ)求证:MN∥平面BCC1B1;(Ⅱ)求证:MN平面A1B1C;

(Ⅲ)求三棱锥MA1B1C的体积.

B

M

A

CN

A1

B1

C1

四、练习

1.如图,在直三棱柱ABCA1B1C1中,AC3,BC4,AB5,AA14.(Ⅰ)求证ACBC1;

(Ⅱ)在AB上是否存在点D,使得AC1∥平面CDB1,若存在,试给出证明;

若不存在,请说明理由.

CC

1A1

B1

A

B

2.在三棱锥PABC中,PAC和

PBCAB2,O是AB中点.(Ⅰ)在棱PA上求一点M,使得OM∥平面

(Ⅱ)求证:平面PAB⊥平面ABC.

B

.如图,四面体ABCD中,O、E分别是BD、BC的中点,ABADCACBCDBD2.

(Ⅰ)求证:AO平面BCD;

(Ⅱ)在AC上是否存在点F,使AO∥面DEF?若存在,找出点F的位置;

若不存在,说明理由.

B

五、模拟试题与真题

1.如图,正三棱柱ABCA1B1C1的侧棱长和底面边长均为2,D是BC的中点.(Ⅰ)求证:AD平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1ADB1的体积.

2.如图,在四棱锥PABCD中,底面ABCD为菱形,BAD60,Q为AD的 中点,PAPDAD2.(Ⅰ)求证:AD平面PQB;(Ⅱ)点M在线段PC上,PMtPC,试确定t的值,使PA//平面MQB.

3.在四棱锥P-ABCD中,底面ABCD是菱形,ACIBD=O.(Ⅰ)若ACPD,求证:AC平面PBD;(Ⅱ)若平面PAC^平面ABCD,求证:PB=PD;

(Ⅲ)在棱PC上是否存在点M(异于点C)使得BM∥平面PAD?

PPM

若存在,求的值;若不存在,说明理由.

B

C

PC

B

A

O

C

4.如图,四边形ABCD与BDEF均为菱形,DABDBF60,且FAFC.

(Ⅰ)求证:AC平面BDEF;(Ⅱ)求证:FC∥平面EAD.

5.四棱锥PABCD中,底面ABCD是边长为2的菱形,侧面PAD底面ABCD,BCD60,PAPDE是BC中点,点Q在侧棱PC上.

(Ⅰ)求证:ADPB;(Ⅱ)若

6.已知菱形ABCD中,AB=4,BAD60(如图1所示),将菱形ABCD沿对角线BD翻折,使点C翻折到点C1的位置(如图2所示),点E,F,M分别是AB,DC1,BC1的中点.(Ⅰ)证明:BD∥平面EMF;(Ⅱ)证明:AC1BD;

(Ⅲ)当EF

AB时,求线段AC1的长.

PQ

,当PA∥平面DEQ时,求的值. PPC

Q

CE

A

B

DC

1FM

A

图1

BAE

图2

B

7.如图1,在RtABC中,C90,D,E分别为

AC,AB的中点,点F为线段CD上的一点,将ADE

沿DE折起到A1DE的位置,使A1FCD,如图2.(Ⅰ)求证:DE//平面A1CB;(Ⅱ)求证:A1FBE;

A1

DFC

图1

B

C

F

B

图2

E

⊥平面DEQ?(Ⅲ)线段A1B上是否存在点Q,使AC1

说明理由.

第五篇:线线垂直、线面垂直、面面垂直的判定与性质

清新县滨江中学2012届高三文科数学第一轮复习资料2011-12-

31空间中的垂直关系

1.判断线线垂直的方法:所成的角是,两直线垂直;

垂直于平行线中的一条,必垂直于另一条。

三垂线定理:在平面内的一条直线,如果它和这个平面的,那么它也和这条斜线垂直。三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直

PO,O推理模式: PAAaAO。

a,aAP

2.线面垂直

定义:如果一条直线l和一个平面α相交,并且和平面α内的任意一条直线都,我们就说直线l和平面αl叫做平面的垂线,平面α叫做直线l的垂面,直线与平面的交点叫做垂足。直线l与平面α垂直记作:。

直线与平面垂直的判定定理:如果,那么这条直线垂直于这个平面。

推理模式:

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线。

3.面面垂直

两个平面垂直的定义:相交成的两个平面叫做互相垂直的平面。两平面垂直的判定定理:(线面垂直面面垂直)

如果,那么这两个平面互相垂直。

推理模式:

两平面垂直的性质定理:(面面垂直线面垂直)

若两个平面互相垂直,那么在一个平面内垂直于它们的的直线垂直于另一个平面。

课后练习

1、(2008上海,13)给定空间中的直线l及平面,条件“直线l与平面内无数条直线都垂直”是“直线l与平面垂直”的()条件

A.充要B.充分非必要C.必要非充分D.既非充分又非必要

2、已知正方体ABCD-A1B1C1D1中,直线l是异面直线AB1 和A1D的公垂线,则直线l与直线BD1的关系为()

A.l⊥BD1B.l∥BD1C.l与BD1 相交D.不确定

1、如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点

(1)求证:CD⊥AE;

(2)求证:PD⊥面ABE.2、如图,棱柱ABCA1B1C1BCC1B1的侧面是菱形,B1CA1B

证明:平面AB1C平面A1BC13、如图,四棱锥PABCD中,底面ABCD为平行四边形。DAB60,AB2AD,PD 底面ABCD,证

明:PABD4、如图所示,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点

(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;

(Ⅱ)证明:平面ABM⊥平面A1B1M

面面垂直的性质

1、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.S

A C2、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD 证明:AB⊥平面VAD

V D

C B3、如图,平行四边形ABCD中,DAB60,AB2,AD4将

沿BD折起到EBD的位置,使平面EDB平面ABD 求证:ABDE4、如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD;

(2)平面BEF⊥平面PAD

(第4题

图)

CBD

5.如图,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =2,D 是A1B1 中点.(1)求证C1D ⊥平面A1B ;(2)当点F 在BB1 上什么位置时,会使得AB1 ⊥平面C1DF ?并证明你的结论

下载立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质word格式文档
下载立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2012高一数学必修二立体几何的线面垂直[大全]

    2012必修二立体几何的线面垂直1.如图,四面体ABCD中,AD平面BCD, E、F分别为AD、AC的中点,BCCD. 求证:(1)EF//平面BCD(2)BC平面ACD.2. 如图,P为ABC所在平面外一点,PA平面ABC,ABC90,AEPB于E,AFPC......

    线面平行的判定与性质[范文大全]

    线面平行的判定与性质[基础练习]1.下列命题正确的是A 一直线与平面平行,则它与平面内任一直线平行B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行C 一直线与平面......

    线线垂直、线面垂直、面面垂直的判定_经典试题 2

    线线垂直、线面垂直、面面垂直的判定1、 如图,在四棱锥P-ABCD中,2、如图,棱柱 PA⊥底面ABCD,AB⊥AD,AC⊥CD,ABCA1B1C1的侧面 BCC1B1是菱形,B1CA1B ∠ABC=60°,PA=AB=BC,E是PC的中点.证明:平......

    立体几何中平行与垂直的证明(5篇模版)

    立体几何中平行与垂直的证明姓名2.掌握正确的判定和证明平行与垂直的方法.D1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;例1.已知正方体ABCD—A1B1C1D1, O是底A......

    线面垂直判定与性质循序渐进式练习

    线面垂直判定与性质循序渐进式练习一、线线垂直与线面垂直:1、条件的正确填写:(1)由线线垂直证明线面垂直的训练:①如左图:由5个条件:可证:AB⊥平面PDC②如左图:由5个条件:可证:AP⊥平......

    高一数学 线面平行的判定与性质

    [文件]sxgbk0025.doc[科目]数学[关键词]线面平行/知识要点/直线和平面的位置关系[标题]线面平行的判定与性质[内容]【知识要点】一、直线和平面的位置关系1、线面平行定义:如......

    1.2《点线面之间的位置关系--线面垂直的判定和性质2》教案(苏教版必修2)

    第17课时 直线与平面垂直的判定和性质(二) 教学目标: 使学生掌握直线和平面垂直的性质,点到面的距离,线到面的距离;对学生进行转化思想渗透,培养学生空间想象能力;使学生从问题解决......

    数学必修2第二章线面平行、面面平行的判定及性质练习(五篇模版)

    2.2线面平行、面面平行的判定例题解析:例1.如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.例2.正方形ABCD交正方形ABEF于AB,M、N求证:MN//平面BCE例3.已......