第一篇:高中数学笔记误区分析解析
高中数学笔记误区分析解析
俗话说:“好记性不如烂笔头。”的确,上课时把教师讲的概念、公式和解题技巧记下来,把听过或看过的重要信息清晰地保存下来,有利于减轻复习负担,提高学习效率。但在实际学习中,不少同学忙于记笔记,没有处理好听、看、记和思的关系,顾此失彼,从而影响学习效果。这里,笔者仅就同学们在数学笔记中存在的几种误区进行分析,以帮助大家提高记数学笔记的效率。
误区之一:笔记成了教学实录
有的同学习惯于“教师讲,自己记,复习背,考试模仿”的学习,一节课下来,他们的笔记往往记了几页纸,可以说是教材和教师板书的“映射”,成了教学实录。这些同学过分依赖笔记,忽视老师的讲解,忽视思考,以为老师讲的没有听懂不要紧,只要课后认真看笔记就可以了。殊不知,这样做往往会忽视老师的一些精彩分析,使自己对知识的理解肤浅,增加学习负担,学习效率反而降低,易形成恶性循环。一般来讲,在高中数学的学习中,上课要以听讲和思考为主,并简明扼要地把教师讲的思路记下来,课本上叙述详细的地方可以不记或略记。同时,要记下自己的疑问或闪光的思想。如老师讲概念或公式时,主要记知识的发生背景、实例、分析思路、关键的推理步骤、重要结论和注意事项等;对复习讲评课,重点要记解题策略(如审题方法、思路分析、最优解法等)以及典型错误与原因剖析,总结思维过程,揭示解题规律。记笔记时,不要把笔记本记满,要留有余地,以便课后反思、整理,这样既可以提高听课效率,又有利于课后有针对性的复习,从而收到事半功倍的效果。误区之二:笔记本成了习题集
翻开一些同学的数学笔记本,可以说是高考试题大全以及一些解题技巧、一题多解之类的集锦,很少涉及知识点之间的联系、思想方法的提炼及解题策略的整理,没有自己的钻研体验,笔记本成了习题集。诚然,做题是学习数学的基本途径,多积累一些习题也是必要的,但若一味做题抄录,不认真领悟其中蕴含的重要数学思想和方法,是学不好数学的。经验告诉我们,少量典型习题及其解法的确要记在笔记本上,但不能就题论题,而是要把重点放在习题价值的挖掘上,即注意写好解题评注。这就好比安装在高速公路两旁的路标,它们会提醒你何时减速,何时急转弯,何时遇到岔路口等。解题也是如此,易错之处或重要的解题思想,要用简短精炼的词语作为评注,把闪光的智慧用笔头记下来,这对积累经验,提升数学素养大有裨益。隔一段时间后,再把它们拿出来推敲一番,往往会温故知新。总之,笔记应成为自己研究数学的心得,指引学习前进方向的路标。
误区之三:笔记本成了过期“期刊”
有些同学的笔记本好比过期期刊,时间一长就弃于一旁,没有发挥它应有的作用,实在可惜。事实上,许多高考优胜者的经验之一就是使自己的笔记成为个人的“学习档案”和最重要的复习资料。因为,好的笔记是课本知识的浓缩、补充和深化,是思维过程的展现与提炼。合理利用笔记可以节省时间,突出重点、提高效率。当然,还要经常对笔记进行阶段性整理和补充,建立有个性的学习资料体系。如可以分类建立“错题集”,整理每次练习和考试中出现的错误,并作剖析;还可以将笔记整理为“妙题巧解”、“方法点评”、“易错题”等类别。只要这样坚持做下去,不断扩大成果,就能克服“盲点”,走出“误区”,到了紧张的综合复习阶段,就会显得轻松、有序,还可以腾出更多的精力和时间,把所学知识系统化、信息化。
第二篇:史上最全高中数学笔记
最全高中数学笔记
第一章:易错点大全 第一节:解题前任务
1做题先看是否有小括号。
2解题凡有两组解,设法取舍验证。3解不等式、求参数范围关注等号。
4构建不等关系,例如使用三角形两边大于第三边。5含参问题首先考虑分离参数。6函数存在a、x型常变换主元。7三角化简遵循:化切为弦。8讨论单调性,先观察后通分。9s0=0,能够验证数列是否分段。10求圆锥曲线问题,△>0。
11不等式问题,解集端点对应方程根。12关注导数问题的函数定义域。13双曲线关注两支的取舍。
14活用向量,对应建立两向量横坐标相等。15等比数列偶数项开方后取舍。
使用均值不等式的三个要求,尤其关注等号成立条件。
第二节:易忽视的重要解题前提 1定义域大范围及括号(n∈z)。2数列验证n=1是否符合通项。
3解析几何:所设直线k是否存在、△>0、焦点位置、短轴长与短半轴长的区别。
4分奇偶性的数列问题,先求偶再求奇可简化运算。5关注区间开闭问题。
6运用正难则反,由题目向已知转化。
第二章:高中数学知识梳理 第一节:集合与简易逻辑
属于最简单的题目,但有许多关注事项。
集合中空集存在,容易忽视。在转化过程中,会出现繁杂运算,可使用补集思想,减少讨论。
否命题否定小前提,不否定大前提。原命题与逆否命题的等价性转化。
第二节:解三角形
一、正弦定理:
1.2.变形:a=2RsinA
3.S=absinC=1/2(a+b+c)r=1/2︱x1y2-x2y1︱
4.应用:解三角形
大边对大角 两内角之和小于180° 弦函数的有界性
5.内角平分线定理:在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC.6.三角形内,a>b→sinA>sinB。
第三篇:高中数学复习笔记小结
高中数学复习笔记
一、函数图象
1、对称:
y=f(x)与y=f(-x)关于y轴对称,例如: 与()关于y轴对称
y=f(x)与y= —f(x)关于x轴对称,例如: 与 关于x轴对称
y=f(x)与y= —f(-x)关于原点对称,例如: 与 关于原点对称
y=f(x)与y=f(x)关于y=x对称,例如: y=10 与y=lgx关于y=x对称
y=f(x)与y= —f(—x)关于y= —x对称,如:y=10 与y=—lg(—x)关于y= —x对称 注:偶函数的图象本身就会关于y轴对称,而奇函数的图象本身就会关于原点对称,例如: 图象本身就会关于y轴对称,的图象本身就会关于原点对称。y=f(x)与y=f(a—x)关于x= 对称()
注:求y=f(x)关于直线 x y c=0(注意此时的系数要么是1要么是-1)对称的方程,只需由x y+c=0解出x、y再代入y=f(x)即可,例如:求y=2x+1关于直线x-y-1=0对称的方程,可先由x-y-1=0解出x=y+1,y=x-1,代入y=2x+1得:x-1=2(y+1)整理即得:x-2y-3=0
2、平移:
y=f(x)y= f(x+)先向左(>0)或向右(<0)平移| |个单位,再保持纵坐标不变,横坐标压缩或伸长为原来的 倍(若y= f(x+)y=f(x)则先保持纵坐标不变,横坐标压缩或伸长为原来的 倍,再将整个图象向右(>0)或向左(<0)平移| |个单位,即与原先顺序相反)
y=f(x)y= f 先保持纵坐标不变,横坐标压缩或伸长为原来的| |倍,然后再将整个图象向左(>0)或向右(<0)平移| |个单位,(反之亦然)。
3、必须掌握的几种常见函数的图象
1、二次函数y=a +bx+c(a)(懂得利用定义域及对称轴判断函数的最值)
2、指数函数()(理解并掌握该函数的单调性与底数a的关系)
3、幂函数()(理解并掌握该函数的单调性与幂指数a的关系)
4、对数函数y=log x()(理解并掌握该函数的单调性与底数a的关系)
5、y=(a为正的常数)(懂得判断该函数的四个单调区间)
6、三角函数y=sinx、y=cosx、y=tanx、y=cotx(能根据图象判断这些函数的单调区间)注:三角中的几个恒等关系
sin x+ cos x=1 1+tan x=sec x 1+cot x=csc x tanx =1 利用函数图象解题典例
已知 分别是方程x +10 =3及x+lgx=3的根,求:
分析:x +10 =3可化为10 =3—x,x+lgx=3可化为lgx=3—x,故此可认为是曲线 y=10、y= lgx与直线y=3—x的两个交点,而此两个交点关于y=x对称,故问题迎刃而解。答案:3
4、函数中的最值问题:
1、二次函数最值问题 结合对称轴及定义域进行讨论。
典例:设a∈R,函数f(x)=x2+|x-a|+1,x∈R,求f(x)的最小值. 考查函数最值的求法及分类讨论思想.
【解】(1)当x≥a时,f(x)=x2+x-a+1=(x+)2-a+ 若a≤- 时,则f(x)在[a,+∞]上最小值为f(-)= -a 若a>- 时,则f(x)在[a,+∞)上单调递增 fmin=f(a)=a2+1(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+ 若a≤ 时,则f(x)在(-∞,单调递减,fmin=f(a)=a2+1 当a> 时,则f(x)在(-∞,上最小值为f()= +a 综上所述,当a≤- 时,f(x)的最小值为 -a 当- ≤a≤ 时,f(x)的最小值为a2+1 当a> 时,f(x)的最小值为 +a
2、利用均值不等式
典例:已知x、y为正数,且x =1,求x 的最大值
分析:x = =(即设法构造定值x =1)= = 故最大值为
注:本题亦可用三角代换求解即设x=cos,=sin 求解,(解略)
3、通过求导,找极值点的函数值及端点的函数值,通过比较找出最值。
4、利用函数的单调性
典例:求t 的最小值(分析:利用函数y= 在(1,+)的单调性求解,解略)
5、三角换元法(略)
6、数形结合
例:已知x、y满足x,求 的最值
5、抽象函数的周期问题
已知函数y=f(x)满足f(x+1)= —f(x),求证:f(x)为周期函数 证明:由已知得f(x)= —f(x —1),所以f(x+1)= —f(x)=—(—f(x —1))
= f(x —1)即f(t)=f(t —2),所以该函数是以2为最小正周期的函数。
解此类题目的基本思想:灵活看待变量,积极构造新等式联立求解
二、圆锥曲线
1、离心率
圆(离心率e=0)、椭圆(离心率0
2、焦半径
椭圆:PF =a+ex、PF =a-ex(左加右减)(其中P为椭圆上任一点,F 为椭圆左焦点、F 为椭圆右焦点)
注:椭圆焦点到其相应准线的距离为
双曲线:PF = |ex +a|、PF =| ex-a|(左加右减)(其中P为双曲线上任一点,F 为双曲线左焦点、F 为双曲线右焦点)
注:双曲线焦点到其相应准线的距离为
抛物线:抛物线上任一点到焦点的距离都等于该点到准线的距离(解题中常用)圆锥曲线中的面积公式:(F、F 为焦点)
设P为椭圆上一点,=,则三角形F PF 的面积为:b 注:|PF | |PF |cos =b 为定值
设P为双曲线上一点,=,则三角形F PF 的面积为:b 注:|PF | |PF |sin =b 为定值 附:三角形面积公式:
S= 底 高= absinC= = r(a+b+c)=(R为外接圆半径,r为内切圆半径)=(这就是著名的海伦公式)
三、数列求和
裂项法:若 是等差数列,公差为d()则求 时可用裂项法求解,即 =()= 求导法:(典例见高三练习册p86例9)倒序求和:(典例见世纪金榜p40练习18)
分组求和:求和:1-2+2-4+3-8+4-16+5-32+6-„分析:可分解为一个等差数列和一个等比数列然后分组求和
求通项:构造新数列法典例分析:典例见世纪金榜p30例4——构造新数列即可
四、向量与直线
向量(a,b),(c,d)垂直的充要条件是ac+bd=0 向量(a,b),(c,d)平行的充要条件是ad—bc=0
附:直线A x+B y+C =0与直线A x+B y+C =0垂直的充要条件是A A + B B=0
直线A x+B y+C =0与直线A x+B y+C =0平行的充要条件是A B-A B=0 向量的夹角公式: cos =
注1:直线的“到角”公式: 到 的角为tan = ;“夹角”公式为tan =||(“到角”可以为钝角,而“夹角”只能为 之间的角)注2:异面直线所成角的范围:(0,] 注3:直线倾斜角范围[0,)注4:直线和平面所成的角[0,] 注5:二面角范围:[0,] 注6:锐角:(0,)
注7:0到 的角表示(0,] 注8:第一象限角(2k,2k +)
附:三角和差化积及积化和差公式简记 S + S = S C S + S = C S C + C = C C C — C = — S S
五、集合
1、集合元素个数的计算 card(A)=card(A)+ card(B)+ card(C)—card(A)—card()—card(C A)+card(A B C)(结合图形进行判断可更为迅速)
2、从集合角度来理解充要条件:若A B,则称A为B的充分不必要条件,(即小的可推出大的)此时B为A的必要不充分条件,若A=B,则称A为B的充要条件 经纬度 六、二项展开式系数:
C +C +C +„C =2(其中C + C + C +„=2 ;C +C + C +„=2)例:求(2+3x)展开式中
1、所有项的系数和
2、奇数项系数的和
3、偶数项系数的和
方法:只要令x为1或—1即可
七、离散型随机变量的期望与方差
E(a +b)=aE +b;E(b)=b D(a +b)=a D ;D(b)=0 D =E —(E)
特殊分布的期望与方差
(0、1)分布:期望:E =p;方差D =pq 二项分布: 期望E =np;方差D =npq 注:期望体现平均值,方差体现稳定性,方差越小越稳定。
八、圆系、直线系方程
经过某个定点()的直线即为一直线系,可利用点斜式设之(k为参数)一组互相平行的直线也可视为一直线系,可利用斜截式设之(b为参数)
经过圆f(x、y)与圆(或直线)g(x、y)的交点的圆可视为一圆系,可设为: f(x、y)+ g(x、y)=0(此方程不能代表g(x、y)=0);或f(x、y)+g(x、y)=0(此方程不能代表f(x、y)=0)
附:回归直线方程的求法:设回归直线方程为 =bx+a,则b=
a= -b
第四篇:劳动合同认识误区解析
问题:我是去年到该公司的,我的上司想开除我,并和人事部经理协商此事,该经理说因不满我试用期的表现要解雇我,并让我提出离职申请。当然我没有提出离职,并且我要求赔偿无故解约的违约金。公司现在否认开除我的说法,让我回到岗位上继续工作,我不肯,这两个月来,我准时上下班,但不做任何工作,直到赔偿我为止,请问各位老师,这样对吗?
答复:上述是一位普通劳动者的问题,其中包含了一些常见的误解,使得整件描述变得扑朔迷离:
说试用期却不知有否劳动合同?
试用期是劳动合同中的一项可选约定条款,它是随劳动合同的存在而存在的。提问者所在公司经理提出试用期工作不满意,那就要看是不是已经签过劳动合同,如果没有签订过劳动合同,任何关于试用期的约定都是没有意义的。
解雇为什么要让员工提申请?
公司对试用期内员工不满意,如果能证明其不符合录用条件,可以随时解除劳动合同。如果不是在试用期内,则需要对员工作适当培训或者调岗,仍觉得不能胜任工作的,可以提前三十天通知解除,但需要给经济补偿。但是如果员工自己提出辞职,则不存在经济补偿金问题了。无论哪方提出解除,都应该拿出书面的通知来。
员工离职由谁付违约金?
用人单位和劳动者曾书面约定合法违约金的,员工提前离职一般有违约金的问题。如果是用人单位单方解除,则由用人单位支付违约金,相反,则由劳动者支付。但是违约金不是经济补偿金,先前没有约定是不可以随便提出这个要求的。
开除和解雇有什么关系?
开除主要是过去劳动部奖惩条例中的说法,现主要用于国有企业。私企、外企等非公经济中的开除其实是指过错性解除,因为员工严重违纪等过错,用人单位可以随时解除劳动合同。所以不能把开除和解雇混为一谈。
弄清楚上面这些问题后,提问者的公司现并没有正式对其提出解除合同,因此他可以继续正常在单位里上班,不必苦等什么违约金的出现。
来源:中国人力资源网
第五篇:简历常见误区解析
误区一:简历词汇过于大众
看到“活泼开朗、外向大方、勤奋努力”等词汇出现在简历中你会怎么样,很没新意对吧,提不起兴趣对吧,但是你想想自己的简历是否也有类似的词汇出现呢?现在,你知道为什么hr不喜欢你的简历了吧。在文字中无法突出自己的个性,是这种简历最失败的关键。
那么,简历需要如何突出自己的特点呢?量化依然是最有效的方式。因为在通篇文字的文档里数字非常醒目,尤其是表明绩效的数字是不会让hr错过的,相比之下,文字描述的业绩可能被忽略掉。此外,用此的新颖也非常重要,评价自己时尽量下功夫想一些贴切又有个性的词,也会让hr感觉新鲜。
误区二:简历水分太多
对于求职者,不一定都有合适的工作经验,尤其对于大学生,根本没有工作经验,所以为了在简历中突出自己,有时会不切实际地把自己表扬一番。其实hr也是过来人,他怎么会不知道求职者的这种心态呢,所以,在看简历时,他更注重的是求职者的真正能力,当然,经验也会加分,但是如果有水分的经验一定会扣分的。所以,当你真的没有经验时,就把重点放到对于自己能力特征的描述上吧,让hr尽可能多的了解你,与相应的岗位作对比,误区三:简历准备不足
想一下,你接到面试通知时,会怎么准备你的衣服呢,是不是即时同一套衣服你也会检查一下是否干净,陪饰是否合理等。其实我们在面试之前都会很仔细的去准备,因为,这是一次机会。
但是,有多少人在投出自己的简历之前也这样做呢,检查一下简历是否与职位匹配,修改不合适的信息,核对联系方式等。其实这也是一个机会,只是很多时候被忽略。很多人每天在网上求职找工作的时间是1个小时,而在这一个小时里竟然会投递几十份甚至上百份简历。网略求职越来越方便,我们制作简历的成本越来越低,所以,投递简历时的思考越来越少,所以,一份简历走天下成了很多人的选择。想一下,这样将会有多少机会白白溜走。所以,要么不投,要投,就要下功夫。只有这样,简历的回复率才会提高,面试机会才会增加。