专题:18年不等式高考习题
-
不等式习题
1.若方程x2(m2)xm50只有正根,则m的取值范围是.
A.m4或m4B. 5m4
C.5m4D. 5m2
2.若f(x)lgx22ax1a在区间(,1]上递减,则a范围为
A.[1,2)B. [1,2]
C.1,D. [2,)
3.若0yx
2,且tanx3tany,则xy的最 -
不等式综合习题
含绝对值不等式的解法习题
1.已知不等式|,(1)当a2时,解此不等式; x3||x4|a
(2)若|解集为,求a的取值范围。 x3||x4|a
2.已知f,(1)当a 5时,求f(x)定义域;(x)x1||x2|a
(2)若f(x)的定义域为R,求a的 -
不等式典型习题
1.若关于x的不等式x-1≤a有四个非负整数解, a的取值范围是
2.已知关于x的不等式组xa0的整数解共有5个,则a的取值范围是.
32x1
3. 若不等式(3a-2)x+2<3的解集是x<2,那么xab4.已知关于x的 -
一元二次不等式习题[
一元二次不等式基础的练习题
一、十字相乘法练习:
1、x2+5x+6=2、x2-5x+6=3、x2+7x+12=
4、x2-7x+6=5、x2-x-12=6、x2+x-12=
7、x2+7x+12=8、x2-8x+12=9、x2-4x-12=10、3x+5x -
解不等式习题(一)
解不等式习题(一)一、解下列一元二次不等式:
1.x27x602.x2x1203.x28x1204.3x216x1205.x24x506.2x215x707.2x211x1208.2x26x509.x22x3010.6x2x2011.x23x5012.2x211x6013.3x211x4 -
2013高考数学均值不等式专题
均值不等式归纳总结ab(ab2)2ab222(当且仅当ab时等号成立)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最
-
高考常用不等式全面总结
高考常用不等式 (1)基本不等式:a,bRa2b22ab(当且仅当a=b时取“=”号). (2)均值不等式:a,bRab2ab(当且仅当a=b时取“=”号). bbmana1 aambnb(3)分式不等式:ab 0,m0,n0,则(4)证明不等式常用方法:
-
2007-2013年陕西省高考三角函数习题+答案
2007-2012年陕西高考三角函数题集及答案2007年4.已知sinα=544,则sinα-cosα的值为51313(A)-(B)-(C)(D)555517.(本小题满分12分)设函数f(x)=a-b,其中向量a=(m,cos2x),b=(1+sin2x
-
均值不等式的应用(习题+答案)
均值不等式应用一.均值不等式1.(1)若a,bR,则a2b22ab若a,bR,则ab2. 若a,bR*,则ab2*ab222ab时取“=”)ab若a,bR,则ab22ab(当且仅当ab时取“=”)ab若a,bR,则ab) (当且仅当ab时
-
高考不等式解题详解[大全五篇]
高考数学不等式解法不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了
-
高考冲刺不等式的证明
高考冲刺不等式的证明【本周授课内容】:不等式的证明【重点】:正确使用不等式的基本性质与定理,理解并掌握证明不等式的常用方法。【难点】:据所证不等式的结构特征选择证明方法
-
高考不等式大盘点(写写帮推荐)
高考不等式大盘点
从高考考题分析,不等式及其不等式的应用已渗透到函数、三角、数列、解析几何、立体几何、概率等各个内容中,涉及的深度、广度也在不断地提高和增大,充分体 -
高考重点18 不等式证明
www.edusx.net 免费数学资源网 无需注册,免费下载,关注课件、试题、教案的打包下载和参考 难点18 不等式的证明策略不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答
-
不等式的证明方法习题精选精讲
习题精选精讲不等式的证明不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方
-
选修4-5不等式的证明方法及习题
不等式的证明方法一、比较法1. 求证:x2 + 3 > 3x2. 已知a, b, m都是正数,并且a < b,求证:ambmab变式:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断? 3. 已知a, b都是正数,
-
高考谚语与习题
关联性教育首倡者 2014高考英语常考英文谚语集锦及练习 英语谚语是洋溢着异国文化气息的哲理性语言,是智慧的结晶。近年的高考英语试题中的谚语的出现频率越来越高,它通常
-
高考数学不等式部分知识点梳理
高考数学不等式部分知识点梳理一、不等式的基本概念1、不等(等)号的定义:ab0ab;ab0ab;ab0ab.2、不等式的分类:绝对不等式;条件不等式;矛盾不等式.3、同向不等式与异向不等式.4、同
-
向量 不等式(高考题型与方法)
向量(高考题型与方法)1.已知向量a=1),b=(0,-1),c=(k。若a-2b与c共线,则k=___________________。2.已知向量a,b满足a1,b2, a与b的夹角为60°,则ab3.已知平面向量,,1,2,(2),则2a的值是4.如图